[1]Cohen Y,van den Langenberg K M,Wehner T C,et al. Resurgence of Pseudoperonospora cubensis:the causal agent of cucurbit downy mildew[J]. Phytopathology,2015,105(7):998-1012.
[2]石延霞,李宝聚,刘学敏. 黄瓜霜霉病菌致病作用与两种细胞壁降解酶关系初探[J]. 园艺学报,2003,30(4):465-466.
[3]Gker M,Voglmayr H,Riethmüller A,et al. How do obligate parasites evolve? a multi-gene phylogenetic analysis of downy mildews[J]. Fungal Genetics and Biology,2007,44(2):105-122.
[4]贺玉花,徐永阳,徐志红,等. 甜瓜霜霉病抗性研究进展[J]. 果树学报,2014,31(2):324-334.
[5]田黎,陈向东,孙京城. 新疆黄瓜、甜瓜霜霉病侵染途径及防治[J]. 新疆农业科学,1995,32(3):133-134.
[6]Wallace E C,DArcangelo K N,Quesada-Ocampo L M.Population analyses reveal two host-adapted clades of Pseudoperonospora cubensis,the causal agent of cucurbit downy mildew,on commercial and wild cucurbits[J]. Phytopathology,2020,110(9):1578-1587.
[7]VandenLangenberg K M,Wehner T C. Downy mildew disease progress in resistant and susceptible cucumbers tested in the field at different growth stages[J]. HortScience,2016,51(8):984-988.
[8]Lebeda A,Cohen Y. Cucurbit downy mildew (Pseudoperonospora cubensis)-biology,ecology,epidemiology,host-pathogen interaction and control[J]. European Journal of Plant Pathology,2011,129(2):157-192.
[9]Jenkins J M Jr. Studies on the inheritance of downy mildew resistance and of other characters in cucumbers[J]. The Journal of Heredity,1946,37(9):267-271.
[10]Lebeda A.Screening of wildcucumis species against downy mildew (Pseudoperonospora cubensis) isolates from cucumbers[J]. Phytoparasitica,1992,20(3):203-210.
[11]Burkhardt A,Day B. Transcriptome and small RNAome dynamics during a resistant and susceptible interaction between cucumber and downy mildew[J]. The Plant Genome,2016,9(1):1-19.
[12]Palti J,Cohen Y. Downy mildew of Cucurbits (Pseudoperonospora Cubensis):the fungus and its hosts,distribution,epidemiology and control[J]. Phytoparasitica,1980,8(2):109-147.
[13]冯东昕,李宝栋. 主要瓜类作物抗霜霉病育种研究进展[J]. 中国蔬菜,1997(2):45-48.
[14]方智远. 中国蔬菜育种科学技术的发展与展望[J]. 农学学报,2018,8(1):12-18.
[15]Parkash V,Sokhi S S. Detached leaf method for main-tenance of cultures of pseudo Peronospora cubensis[J]. Indian Phytopathology,1989,42(4):575-576.
[16]Satou M. Studies of physiological specialization of downy mildew of crucifers caused by Peronospora parasitica[J]. Journal of General Plant Pathology,2000,66(3):283.
[17]张艳菊,秦智伟,周秀艳,等. 黄瓜霜霉病菌保存方法[J]. 植物病理学报,2007,37(4):438-441.
[18]贺玉花. 甜瓜霜霉病抗性基因的SSR标记[D]. 北京:中国农业科学院,2014:19-22.
[19]黄玉贞. 甜瓜霜霉病的发生及综合防治[J]. 新疆农业科技,2003(增刊1):50.
[20]van Vliet G J A,Meysing W D. Inheritance of resistance to Pseudoperonospora cubensis Rost. in cucumber (Cucumis sativus L.)[J]. Euphytica,1974,23(2):251-255.
[21]Mahrishi R P,Siradhana B S. Epidemiology of downy mildew on muskmelon (Cucumis melo L.) caused by Pseudoperonospora cubensis (Berk.and Curt.)[J]. Journal of Turkish Phytopathology,1988,17( 2):67-73.
[22]Shetty A,Shetty H S,Safeeulla K M. Effect of ridge gourd pollen on zoospore germination of Pseudoperonospora cubensis and its significance in epidemiology[J]. Proceedings of the Indian Academy of Sciences(Plant Sciences),1982,91(5):427-431.
[23]Yin Z M,Hennig J,Szwacka M,et al. Tobacco PR-2d promoter is induced in transgenic cucumber in response to biotic and abiotic stimuli[J]. Journal of Plant Physiology,2004,161(5):621-629.
[24]Thines M,Telle S,Ploch S,et al. Identity of the downy mildew pathogens of basil,coleus,and sage with implications for quarantine measures[J]. Mycological Research,2009,113(5):532-540.
[25]Sharma R,Xia X J,Cano L M,et al. Genome analyses of the sunflower pathogen Plasmopara halstedii provide insights into effector evolution in downy mildews and Phytophthora[J]. BMC Genomics,2015,16:741.
[26]Bandamaravuri K B,Nayak A K,Bandamaravuri A S,et al. Simultaneous detection of downy mildew and powdery mildew pathogens on Cucumis sativus and other cucurbits using duplex-qPCR and HRM analysis[J]. AMB Express,2020,10(1):135.
[27]Nezhad A S. Future of portable devices for plant pathogen diagnosis[J]. Lab on a Chip,2014,14(16):2887-2904.
[28]Mahaffee W F. Use of airborne inoculum detection for disease management decisions[M]//Detection and diagnostics of plant pathogens. Dordrecht:Springer Netherlands,2014:39-54.
[29]徐世成,王鹤冰,冯俊杰,等. 黄瓜霜霉病及寄主抗性机制研究进展[J]. 生物工程学报,2022,38(5):1724-1737.
[30]Mochizuki S,Fukumoto T,Ohara T,et al. The rare sugar D-tagatose protects plants from downy mildews and is a safe fungicidal agrochemical[J]. Communications Biology,2020,3(1):423.
[31]Li Y T,Lin J,Yao W Q,et al. Discovery of a new fungicide by screening triazole sulfonylhydrazone derivatives and its downy mildew inhibition in cucumber[J]. Journal of Heterocyclic Chemistry,2020,57(5):2128-2138.
[32]Salas S E,Shepherd C P,Ngugi H K,et al. Disease control attributes of oxathiapiprolin fungicides for management of cucurbit downy mildew[J]. Plant Disease,2019,103(11):2812-2820.
[33]赵杰,赵爱华,胡育海,等. 室内测定30种植物提取液对甜瓜霜霉病的防效[J]. 上海交通大学学报(农业科学版),2007,25(2):161-164.
[34]Zheng L,Gu C,Cao J,et al. Selecting bacterial antagonists for cucurbit downy mildew and developing an effective application method[J]. Plant Disease,2018,102(3):628-639.
[35]叶乃玮,王承芳,干华磊,等. 多黏类芽孢杆菌Paenibacillus polymyxa菌株P1防治黄瓜霜霉病的研究[J]. 植物保护,2021,47(2):271-275.
[36]Atallah O O,Osman A,Ali M A,et al. Soybean β-conglycinin and catfish cutaneous mucous p22 glycoproteins deteriorate sporangial cell walls of Pseudoperonospora cubensis and suppress cucumber downy mildew[J]. Pest Management Science,2021,77(7):3313-3324.
[37]Sedláková B,Lebeda A. Fungicide resistance in Czech populations of cucurbit powdery mildews[J]. Phytoparasitica,2008,36(3):272-289.
[38]Li S N,Lin D X,Zhang Y W,et al. Genome-edited powdery mildew resistance in wheat without growth penalties[J]. Nature,2022,602(7897):455-460.
[39]骆桂芬,高郁芳. 黄瓜叶片中糖和木质素含量与霜霉病诱导抗性的关系[J]. 植物病理学报,1997,27(1):65-69.
[40]齐慧霞,王同坤,齐永顺,等. 不同酒葡萄品种感染霜霉病后叶片生理特性的变化[J]. 果树学报,2006,23(1):73-76.
[41]孟庆玖,周晓榕,庞保平,等. 黄瓜霜霉病菌侵染对黄瓜叶片生理生化指标的影响[J]. 西北农业学报,2014,23(6):141-146.
[42]丁九敏,高洪斌,刘玉石,等. 黄瓜霜霉病抗性与叶片中生理生化物质含量关系的研究[J]. 辽宁农业科学,2005(1):11-13.
[43]何锋,王长春,王锋青,等. 植物抗病基因(R)与病原物无毒基因(Avr)相互作用机制的研究进展[J]. 中国细胞生物学学报,2011,33(9):1037-1044.
[44]李峰. 植物NBS-LRR类抗病基因的研究进展[J]. 分子植物育种,2011(9):1784-1790.
[45]Wan H J,Zhao Z G,Malik A A,et al. Identification and characterization of potential NBS-encoding resistance genes and induction kinetics of a putative candidate gene associated with downy mildew resistance in Cucumis[J]. BMC Plant Biology,2010,10:186.
[46]王贤磊.甜瓜遗传图谱的构建与抗病基因遗传分析[D]. 乌鲁木齐:新疆大学,2011.
[47]Monaghan J,Zipfel C. Plant pattern recognition receptor complexes at the plasma membrane[J]. Current Opinion in Plant Biology,2012,15(4):349-357.
[48]Ulker B,Shahid Mukhtar M,Somssich I E. The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways[J]. Planta,2007,226(1):125-137.
[49]栾倩倩. 黄瓜CsWRKY50基因的克隆与功能研究[D]. 泰安:山东农业大学,2023.
[50]Marchive C,Léon C,Kappel C,et al. Over-expression of VvWRKY1 in grapevines induces expression of jasmonic acid pathway-related genes and confers higher tolerance to the downy mildew[J]. PLoS One,2013,8(1):e54185.
[51]Reglinski T,Poole P R,Whitaker G,et al. Induced resistance against Sclerotinia sclerotiorum in kiwifruit leaves[J]. Plant Pathology,1997,46(5):716-721.
[52]Mur L A J,Simpson C,Kumari A,et al. Moving nitrogen to the centre of plant defence against pathogens[J]. Annals of Botany,2017,119(5):703-709.
[53]汪尚,徐鹭芹,张亚仙,等. 水杨酸介导植物抗病的研究进展[J]. 植物生理学报,2016,52(5):581-590.
[54]Achuo E A,Audenaert K,Meziane H,et al. The salicylic acid-dependent defence pathway is effective against different pathogens in tomato and tobacco[J]. Plant Pathology,2004,53(1):65-72.
[55]Hamiduzzaman M M,Jakab G,Barnavon L,et al. Beta-aminobutyric acid-induced resistance against downy mildew in grapevine acts through the potentiation of callose formation and jasmonic acid signaling[J]. Molecular Plant-Microbe Interactions,2005,18(8):819-829.
[56]蔡鸿生,王晨芳,马青,等. BTH和K2HPO4诱导黄瓜抗霜霉病研究[J]. 西北农业学报,2007,16(1):95-97.
[57]Horejsi T,Staub J E,Thomas C. Linkage of random amplified polymorphic DNA markers to downy mildew resistance in cucumber (Cucumis sativus L.)[J]. Euphytica,2000,115(2):105-113.
[58]Szczechura W,Staniaszek M,Klosinska U,et al. Molecular analysis of new sources of resistance to Pseudoperonospora cubensis (Berk.et Curt.) Rostovzev in cucumber[J]. Russian Journal of Genetics,2015,51(10):974-979.
[59]Wang Y H,VandenLangenberg K,Wehner T C,et al. QTL mapping for downy mildew resistance in cucumber inbred line WI7120 (PI 330628)[J]. Theoretical and Applied Genetics,2016,129(8):1493-1505.
[60]Thomas C E,Cohen Y,Mccreighti J D,et al. Inheritance of resistance to downy mildew in Cucumis melo[J]. Plant Disease Journal,1988,72(1):33-35.
[61]pinat C,Pitrat M. Inheritance of resistance to downy mildew (Pseudoperonospora cubensis) in muskmelon (Cucumis melo). Ⅱ. Generation means analysis of 5 genitors[J]. Agronomie,1994,14(4):249-257.
[62]Kenigsbuch D. Inheritance of resistance to downy mildew in Cucumis melo PI 124112 and commonality of resistance genes with PI 124111F[J]. Plant Disease,1992,76(6):615.
[63]Angelov D,Krasteva L. Dominant inheritance of downy mildew resistance in melons[J]. Acta Horticulturae,2000(510):273-276.
[64]Shashikumar K T,Pitchaimuthu M,Rawal R D. Generation mean analysis of resistance to downy mildew in adult muskmelon plants[J]. Euphytica,2010,173(1):121-127.
[65]杨柳燕. 甜瓜霜霉病(Pseudoperonospora cubensis)抗性遗传研究及SRAP分子标记[D]. 北京:中国农业科学院,2012:1-2.
[66]邹明学,许勇,张海英,等. 葫芦科瓜类作物分子标记辅助育种研究进展[J]. 生物技术通报,2007,23(4):72-78.
[67]Perchepied L,Bardin M,Dogimont C,et al. Relationship between loci conferring downy mildew and powdery mildew resistance in melon assessed by quantitative trait loci mapping[J]. Phytopathology,2005,95(5):556-565.
[68]Garcia-Mas J,Benjak A,Sanseverino W,et al. The genome of melon (Cucumis melo L.)[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(29):11872-11877.
[69]张学军,杨文莉,张永兵,等. 采用GBS-seq技术构建甜瓜高密度遗传图谱[J]. 新疆农业科学,2019,56(10):1828-1838.
[1]付瑞敏,韩鸿鹏,张丽琴,等.葡萄霜霉病和白粉病拮抗菌的分离、鉴定和He-Ne 激光诱变[J].江苏农业科学,2013,41(08):122.
Fu Ruimin,et al.Isolation and identification of antagonistic bacteria against grape downy mildew and powdery mildew,and its mutation under He-Ne laser irradiation[J].Jiangsu Agricultural Sciences,2013,41(22):122.
[2]李宝燕,王英姿,刘学卿,等.3种杀菌剂对葡萄霜霉病菌的毒力测定和田间药效试验[J].江苏农业科学,2014,42(01):98.
Li Baoyan,et al.Toxicity tests and field control effects of three fungicides against grape downy mildew pathogen[J].Jiangsu Agricultural Sciences,2014,42(22):98.
[3]刘会宁,姚晓雯.葡萄霜霉病抗性与叶片生理生化指标的关系[J].江苏农业科学,2015,43(11):180.
Liu Huining,et al.Relationship between resistance of grape to Plasmopara viticola and physiological and biochemical indices in leaf[J].Jiangsu Agricultural Sciences,2015,43(22):180.
[4]贺玉花,徐永阳,徐志红,等.甜瓜霜霉病抗性基因的SSR标记[J].江苏农业科学,2014,42(07):54.
He Yuhua,et al.SSR markers linked to downy mildew resistant gene in melon[J].Jiangsu Agricultural Sciences,2014,42(22):54.
[5]亢菊侠,赵家奇,吴雅茹,等.设施黄瓜霜霉病高光谱特征选择及预测模型[J].江苏农业科学,2019,47(17):117.
Kang Juxia,et al.Hyperspectral feature selection and prediction model for facility cucumber downy mildew[J].Jiangsu Agricultural Sciences,2019,47(22):117.
[6]王婷,陈茂婷,王卓源,等.乌头霜霉病病原菌生物学特性及致病力[J].江苏农业科学,2019,47(21):172.
Wang Ting,et al.Biological characteristics and pathogenicity of pathogen of downy mildew of Aconitum carmichaelii[J].Jiangsu Agricultural Sciences,2019,47(22):172.
[7]徐彦刚,羊杏平,李良俊.瓜类作物抗蔓枯病研究进展[J].江苏农业科学,2020,48(03):49.
Xu Yangang,et al.Research progress on resistance of cucurbit crops to gummy stem blight[J].Jiangsu Agricultural Sciences,2020,48(22):49.
[8]秦楠,周建波,吕红,等.枯草芽孢杆菌对藜麦霜霉病的防治效果及其促生和改善土壤真菌群落作用[J].江苏农业科学,2023,51(14):159.
Qin Nan,et al.Effects of Bacillus subtilis strain LF17 on biocontrol of quinoa downy mildew,growth promotion of quinoa and improvement of soil fungal community[J].Jiangsu Agricultural Sciences,2023,51(22):159.
[9]白甜,黄大跃,刘璐,等.甜瓜霜霉病研究进展[J].江苏农业科学,2023,51(18):12.
Bai Tian,et al.Research progress of downy mildew of melon[J].Jiangsu Agricultural Sciences,2023,51(22):12.
[10]马文礼,杨锋,杨波,等.酿酒葡萄对霜霉病的田间抗性评价及防治药剂筛选[J].江苏农业科学,2023,51(20):128.
Ma Wenli,et al.Evaluation of field resistance of wine grape to downy mildew and screening of control agents[J].Jiangsu Agricultural Sciences,2023,51(22):128.