|本期目录/Table of Contents|

[1]陈银霞,王志泽,冯成蒿,等.番茄抗根结线虫病Mi基因探索与WRKY转录因子参与抗病调控的研究进展[J].江苏农业科学,2025,53(4):16-22.
 Chen Yinxia,et al.Research progress of Mi gene against root-knot nematode disease in tomato and WRKY transcription factors involved in disease resistance regulation[J].Jiangsu Agricultural Sciences,2025,53(4):16-22.
点击复制

番茄抗根结线虫病Mi基因探索与WRKY转录因子参与抗病调控的研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第53卷
期数:
2025年第4期
页码:
16-22
栏目:
专论与综述
出版日期:
2025-02-20

文章信息/Info

Title:
Research progress of Mi gene against root-knot nematode disease in tomato and WRKY transcription factors involved in disease resistance regulation
作者:
陈银霞王志泽冯成蒿周闯闯聂蔚丹王超楠杜崇
新疆农业大学园艺学院,新疆乌鲁木齐 830052
Author(s):
Chen Yinxiaet al
关键词:
番茄Mi基因根结线虫WRKY转录因子
Keywords:
-
分类号:
S436.412.1+9
DOI:
-
文献标志码:
A
摘要:
根结线虫病作为世界范围内危害植物最为广泛的土传病害之一,给农作物生产造成了巨大的经济损失。番茄作为新疆红色支柱产业,其设施生产饱受线虫病的侵害。目前,生产上对根结线虫病的防治多以化学防治为主,但药剂的频繁使用给生态环境带来了巨大压力。近年来,生物防治的绿色可持续优势逐渐扩大,但生防资源少、田间防治效果差异大等缺陷也掣肘了其应用。优质基因资源的挖掘与利用,仍是从根本上解决番茄抗病的最佳策略。本文首先介绍番茄Mi基因家族中已发掘的10个成员在分子层面的研究进展,阐释番茄抗根结线虫病的现有分子机理;Mi基因可使用的抗源单一、抗病范围有限及土壤温度等条件的制衡,阻碍了优质番茄种质的抗性改良,更多非R基因的挖掘变得尤为重要。WRKY转录因子在作物生物胁迫调控方面扮演重要角色,本文综述近年来WRKY在作物防卫根结线虫病方面的研究应用,以期为后续番茄从不同层面并避免完全依赖Mi基因的抗病育种提供新思路。
Abstract:
-

参考文献/References:

[1]Dong J X,Chen C H,Chen Z X. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response[J]. Plant Molecular Biology,2003,51(1):21-37.
[2]Pereira-Carvalho R C,Boiteux L S,Fonseca M E N,et al. Multiple resistance to Meloidogyne spp.and to bipartite and monopartite Begomovirus spp.in wild Solanum (Lycopersicon) accessions[J]. Plant Disease,2010,94(2):179-185.
[3]Barbary A,Djian-Caporalino C,Palloix A,et al. Host genetic resistance to root-knot nematodes,Meloidogyne spp.,in Solanaceae:from genes to the field[J]. Pest Management Science,2015,71(12):1591-1598.
[4]Aydnl G,Kurtar E S,Mennan S. Screening of Cucurbita maxima and Cucurbita moschata genotypes for resistance against Meloidogyne arenaria,M. incognita,M. javanica,and M. luci[J]. J Nematol,2019,51(1):1-10.
[5]芦屹,魏新政,李晶,等. 新疆设施蔬菜根结线虫病调查诊断方法及绿色防控技术[J]. 中国农技推广,2020,36(6):63-65.
[6]Forghani F,Hajihassani A. Recent advances in the development of environmentally benign treatments to control root-knot nematodes[J]. Frontiers in Plant Science,2020,11:1125.
[7]Eder R,Consoli E,Krauss J,et al. Polysulfides applied as formulated garlic extract to protect tomato plants against the root-knot nematode Meloidogyne incognita[J]. Plants,2021,10(2):394.
[8]Veremis J C,Roberts P A. Relationships between Meloidogyne incognita resistance genes in Lycopersicon peruvianum differentiated by heat sensitivity and nematode virulence[J]. Theoretical and Applied Genetics,1996,93(5/6):950-959.
[9]Kaur P,Shukla N,Joshi G,et al. Genome-wide identification and characterization of miRNAome from tomato (Solanum lycopersicum) roots and root-knot nematode (Meloidogyne incognita) during susceptible interaction[J]. PLoS One,2017,12(4):e0175178.
[10]El-Sappah A H,Islam M M,El-Awady H H,et al. Tomato natural resistance genes in controlling the root-knot nematode[J]. Genes,2019,10(11):925.
[11]Furumizu C,Sawa S. A rapid method for detection of the root-knot nematode resistance gene,Mi-1.2,in tomato cultivars[J]. Plant Biotechnology,2023,40(1):105-108.
[12]Caplan J L,Zhu X H,Mamillapalli P,et al. Induced ER chaperones regulate a receptor-like kinase to mediate antiviral innate immune response in plants[J]. Cell Host & Microbe,2009,6(5):457-469.
[13]Sun T J,Lu Y,Narusaka M,et al. A novel pyrimidin-like plant activator stimulates plant disease resistance and promotes growth[J]. PLoS One,2015,10(4):e0123227.
[14]Bakker E G,Toomajian C,Kreitman M,et al. A genome-wide survey of R gene polymorphisms in Arabidopsis[J]. The Plant Cell,2006,18(8):1803-1818.
[15]Xiao K,Zhu H F,Zhu X,et al. Overexpression of PsoRPm3,an NBS-LRR gene isolated from myrobalan plum,confers resistance to Meloidogyne incognita in tobacco[J]. Plant Molecular Biology,2021,107(3):129-146.
[16]Bozbuga R,Lilley C J,Knox J P,et al. Host-specific signatures of the cell wall changes induced by the plant parasitic nematode,Meloidogyne incognita[J]. Scientific Reports,2018,8:17302.
[17]Nguy[KG-*2]ê~n P V,Bellafiore S,Petitot A S,et al. Meloidogyne incognita-rice (Oryza sativa) interaction:a new model system to study plant-root-knot nematode interactions in monocotyledons[J]. Rice,2014,7(1):23.
[18]谢政文,王连军,陈锦洋,等. 植物WRKY转录因子及其生物学功能研究进展[J]. 中国农业科技导报,2016,18(3):46-54.
[19]Russell A R,Ashfield T,Innes R W. Pseudomonas syringae effector AvrPphB suppresses AvrB-induced activation of RPM1 but not AvrRpm1-induced activation[J]. Molecular Plant-Microbe Interactions,2015,28(6):727-735.
[20]Alam M,Tahir J,Siddiqui A,et al. RIN4 homologs from important crop species differentially regulate the Arabidopsis NB-LRR immune receptor,RPS2[J]. Plant Cell Reports,2021,40(12):2341-2356.
[21]Ngou B P M,Jones J D G,Ding P T. Plant immune networks[J]. Trends in Plant Science,2022,27(3):255-273.
[22]Forbes K M,Mappes T,Sironen T,et al. Food limitation constrains host immune responses to nematode infections[J]. Biology Letters,2016,12(9):20160471.
[23]Kalaiarasan P. Biochemical markers for identification of root knot nematode (Meloidogyne incognita) resistance in tomato[J]. Karnataka Journal of Agricultural Sciences,2009,22(3):471-475.
[24]Seah S,Williamson V M,Garcia B E,et al. Evaluation of a co-dominant SCAR marker for detection of the Mi-1 locus for resistance to root-knot nematode in tomato germplasm [J]. Report of the Tomato Cenetics Cooperative,2007,57:37-40.
[25]Sandbrink J M,van Ooijen J W,Purimahua C C,et al. Localization of genes for bacterial canker resistance in Lycopersicon peruvianum using RFLPs[J]. Theoretical and Applied Genetics,1995,90(3/4):444-450.
[26]Hwang C F,Bhakta A V,Truesdell G M,et al. Evidence for a role of the N terminus and leucine-rich repeat region of the Mi gene product in regulation of localized cell death[J]. The Plant Cell,2000,12(8):1319-1329.
[27]Yaghoobi J,Kaloshian I,Wen Y,et al. Mapping a new nematode resistance locus in Lycopersicon peruvianum[J]. Theoretical and Applied Genetics,1995,91(3):457-464.
[28]Hoseinpoor R,Kargar A. Evaluation of the effect powder and aqueous extracts of some plant species on tomato yield and reproduction of Meloidogyne incognita[J]. International Journal of AgriScience,2012,2:964-968.
[29]Yaghoobi J,Yates J L,Williamson V M. Fine mapping of the nematode resistance gene Mi-3 in Solanum peruvianum and construction of a S.lycopersicum DNA contig spanning the locus[J]. Molecular Genetics and Genomics,2005,274(1):60-69.
[30]Jablonska B,Ammiraju J S S,Bhattarai K K,et al. The Mi-9 gene from Solanum arcanum conferring heat-stable resistance to root-knot nematodes is a homolog of Mi-1[J]. Plant Physiology,2007,143(2):1044-1054.
[31]Jiang L J,Ling J,Zhao J L,et al. Chromosome-scale genome assembly-assisted identification of Mi-9 gene in Solanum arcanum accession LA2157 conferring heat-stable resistance to Meloidogyne incognita[J]. Plant Biotechnology Journal,2023,21(7):1496-1509.
[32]Afifah E N,Murti R H,Nuringtyas T R. Metabolomics approach for the analysis of resistance of four tomato genotypes(Solanum lycopersicum L.) to root-knot nematodes(Meloidogyne incognita)[J]. Open Life Sciences,2019,14:141-149.
[33]Eulgem T,Rushton P J,Robatzek S,et al. The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science,2000,5(5):199-206.
[34]Rushton P J,Somssich I E,Ringler P,et al. WRKY transcription factors[J]. Trends in Plant Science,2010,15(5):247-258.
[35]任永娟,王东姣,苏亚春,等. 植物WRKY转录因子:结构、分类、进化和功能[J]. 农业生物技术学报,2021,29(1):105-124.
[36]Bakshi M,Oelmüller R. WRKY transcription factors:Jack of many trades in plants[J]. Plant Signaling & Behavior,2014,9(2):e27700.
[37]Rinerson C I,Rabara R C,Tripathi P,et al. The evolution of WRKY transcription factors[J]. BMC Plant Biology,2015,15:66.
[38]Chen L G,Song Y,Li S J,et al. The role of WRKY transcription factors in plant abiotic stresses[J]. Biochimica et Biophysica Acta,2012,1819(2):120-128.
[39]Jiang J J,Ma S H,Ye N H,et al. WRKY transcription factors in plant responses to stresses[J]. Journal of Integrative Plant Biology,2017,59(2):86-101.
[40]Wani S H,Anand S,Singh B,et al. WRKY transcription factors and plant defense responses:latest discoveries and future prospects[J]. Plant Cell Reports,2021,40(7):1071-1085.
[41]Kim C Y,Vo K T X,Nguyen C D,et al. Functional analysis of a cold-responsive rice WRKY gene,OsWRKY71[J]. Plant Biotechnology Reports,2016,10(1):13-23.
[42]Mahiwal S,Pahuja S,Pandey G K. Review:structural-functional relationship of WRKY transcription factors:unfolding the role of WRKY in plants[J]. International Journal of Biological Macromolecules,2024,257(Pt 2):128769.
[43]Ribeiro D G,Mota A P Z,Santos I R,et al. NBS-LRR-WRKY genes and protease inhibitors (PIs) seem essential for cowpea resistance to root-knot nematode[J]. Journal of Proteomics,2022,261:104575.
[44]Kaliyappan R,Viswanathan S,Suthanthiram B,et al. Evolutionary expansion of WRKY gene family in banana and its expression profile during the infection of root lesion nematode,Pratylenchus coffeae[J]. PLoS One,2016,11(9):e0162013.
[45]Castaeda N E N,Alves G S C,Almeida R M,et al. Gene expression analysis in Musa acuminata during compatible interactions with Meloidogyne incognita[J]. Annals of Botany,2017,119(5):915-930.
[46]Hada A,Dutta T K,Singh N,et al. A genome-wide association study in Indian wild rice accessions for resistance to the root-knot nematode Meloidogyne graminicola[J]. PLoS One,2020,15(9):e0239085.
[47]张雅涵. 黄瓜根结线虫取食位点早期形成相关WRKY基因的分离与分析[D]. 北京:中国农业科学院,2011.
[48]陆秀红,黄金玲,覃丽萍,等. 番茄响应南方根结线虫侵染相关转录因子的初步分析[J]. 华中农业大学学报,2024,43(1):62-69.
[49]Du C,Jiang J B,Zhang H,et al. Transcriptomic profiling of Solanum peruvianum LA3858 revealed a Mi-3-mediated hypersensitive response to Meloidogyne incognita[J]. BMC Genomics,2020,21(1):250.
[50]Du C,Shen F Y,Li Y,et al. Effects of salicylic acid,jasmonic acid and reactive oxygen species on the resistance of Solanum peruvianum to Meloidogyne incognita[J]. Scientia Horticulturae,2021,275:109649.
[51]Warmerdam S,Sterken M G,Sukarta O C A,et al. The TIR-NB-LRR pair DSC1 and WRKY19 contributes to basal immunity of Arabidopsis to the root-knot nematode Meloidogyne incognita[J]. BMC Plant Biology,2020,20(1):73.
[52]郑井元. 辣椒WRKY转录因子CaWRKY6和CaWRKY30基因的克隆、表达及功能分析[D]. 长沙:中南大学,2012.
[53]Zhang M,Zhang H Y,Tan J,et al. Transcriptome analysis of eggplant root in response to root-knot nematode infection[J]. Pathogens,2021,10(4):470.
[54]Villar-Luna H,Reyes-Trejo B,Gmez-Rodríguez O,et al. Expression of defense genes and accumulation of capsidiol in the compatible interaction Cm334/Nacobbus aberrans and incompatible Cm334/Meloidogyne incognita[J]. Nematropica,2015,45(1):9-19.
[55]Bhattarai K K,Atamian H S,Kaloshian I,et al. WRKY72-type transcription factors contribute to basal immunity in tomato and Arabidopsis as well as gene-for-gene resistance mediated by the tomato R gene Mi-1[J]. The Plant Journal,2010,63(2):229-240.
[56]Chinnapandi B,Bucki P,Miyara S B. SlWRKY45,nematode-responsive tomato WRKY gene,enhances susceptibility to the root knot nematode;M.javanica infection[J]. Plant Signaling & Behavior,2017,12(12):e1356530.
[57]Huang H,Zhao W C,Qiao H,et al. SlWRKY45 interacts with jasmonate-ZIM domain proteins to negatively regulate defense against the root-knot nematode Meloidogyne incognita in tomato[J]. Horticulture Research,2022,9:uhac197.
[58]Chinnapandi B,Bucki P,Fitoussi N,et al. Tomato SlWRKY3 acts as a positive regulator for resistance against the root-knot nematode Meloidogyne javanica by activating lipids and hormone-mediated defense-signaling pathways[J]. Plant Signaling & Behavior,2019,14(6):1601951.
[59]Nie W D,Liu L L,Chen Y X,et al. Identification of the regulatory role of SlWRKYs in tomato defense against Meloidogyne incognita[J]. Plants,2023,12(13):2416.
[60]Kiewnick S,Dessimoz M,Franck L. Effects of the Mi-1 and the N root-knot nematode-resistance gene on infection and reproduction of Meloidogyne enterolobii on tomato and pepper cultivars[J]. Journal of Nematology,2009,41(2):134-139.
[61]Brito J A,Stanley J D,Mendes M L,et al. Host status of selected cultivated plants to Meloidogyne mayaguensis in Florida[J]. Nematropica,2007,37(1):65-72.
[62]Wang Y,Bao Z L,Zhu Y,et al. Analysis of temperature modulation of plant defense against biotrophic microbes[J]. Molecular Plant-Microbe Interactions,2009,22(5):498-506.
[63]Iberkleid I,Ozalvo R,Feldman L,et al. Responses of tomato genotypes to avirulent and Mi-virulent Meloidogyne javanica isolates occurring in Israel[J]. Phytopathology,2014,104(5):484-496.
[64]de Brida A L,Correiaé C S D S,Castro B M C E,et al. Oat,wheat,and Sorghum genotype reactions to Meloidogyne incognita and Meloidogyne javanica[J]. Journal of Nematology,2017,49(4):386-389.

相似文献/References:

[1]何从亮,毛久庚,甘小虎,等.玻璃温室番茄长季节基质袋栽培技术[J].江苏农业科学,2013,41(04):158.
[2]李永灿,余文贵,陈怀谷,等.番茄灰霉病菌产毒条件优化[J].江苏农业科学,2013,41(05):94.
 Li Yongcan,et al.Optimization of toxigenic conditions of tomato Botrytis cinerea[J].Jiangsu Agricultural Sciences,2013,41(4):94.
[3]赵秋月,甘潇,张广臣.Na2CO3胁迫对番茄幼苗生长的影响[J].江苏农业科学,2013,41(05):128.
 Zhao Qiuyue,et al.Effect of Na2CO3 stress on growth of tomato seedlings[J].Jiangsu Agricultural Sciences,2013,41(4):128.
[4]耿德刚,徐俊伟,戈振超,等.温室大棚番茄滴灌试验研究及效益分析[J].江苏农业科学,2013,41(05):132.
 Geng Degang,et al.Drip irrigation experimental and benefit analysis on greenhouse tomato[J].Jiangsu Agricultural Sciences,2013,41(4):132.
[5]杜中平,聂书明.不同配方基质对番茄生长特性、光合特性及产量的影响[J].江苏农业科学,2013,41(05):138.
 Du Zhongping,et al.Effects of different substrates on growth,photosynthetic characteristics and yield of tomato[J].Jiangsu Agricultural Sciences,2013,41(4):138.
[6]赵河,毛秀杰,叶景学.抗叶霉病不同基因型番茄的光合特性[J].江苏农业科学,2014,42(11):185.
 Zhao He,et al(8).Photosynthetic characteristics of different genotypes of tomato with resistance to leaf mold[J].Jiangsu Agricultural Sciences,2014,42(4):185.
[7]陈素娟,孙娜娜.不同基质配比对番茄秧苗生长的影响[J].江苏农业科学,2013,41(06):128.
 Chen Sujuan,et al.Effect of different substrate compositions on growth of tomato seedling[J].Jiangsu Agricultural Sciences,2013,41(4):128.
[8]孙禛禛,吴秋霞,温新宇,等.转反义LetAPX基因番茄抗氧化酶活性在苗期、花期、果期的变化[J].江苏农业科学,2015,43(12):188.
 Sun Zhenzhen,et al.Study on antioxidant enzymes activity during seedling,flowering and fruiting of tomato with antisense LetAPX gene[J].Jiangsu Agricultural Sciences,2015,43(4):188.
[9]李晓慧,张恩让,何玉安,等.亚高温及外源物质调节下番茄的生理响应[J].江苏农业科学,2013,41(07):135.
 Li Xiaohui,et al.Physiological response of tomato under the regulation of sub-high temperature and exogenous substances[J].Jiangsu Agricultural Sciences,2013,41(4):135.
[10]李建宏,张楠,张泽,等.番茄红素提取与测定方法的优化[J].江苏农业科学,2013,41(08):259.
 Li Jianhong,et al.Optimization of lycopene extraction and determination method[J].Jiangsu Agricultural Sciences,2013,41(4):259.

备注/Memo

备注/Memo:
收稿日期:2024-04-08
基金项目:国家自然科学基金青年科学基金(编号:32302652);新疆维吾尔自治区自然科学基金青年科学基金(编号:2022D01B95)。
作者简介:陈银霞(1996—),女,河南淮阳人,硕士研究生,研究方向为番茄分子遗传育种。E-mail:cyx61222@163.com。
通信作者:杜崇,博士,硕士生导师,主要从事番茄分子遗传育种研究。E-mail:godv2018@163.com。
更新日期/Last Update: 2025-02-20