[1]Molero G,Joynson R,Pinera-Chavez F J,et al. Elucidating the genetic basis of biomass accumulation and radiation use efficiency in spring wheat and its role in yield potential[J]. Plant Biotechnology Journal,2019,17(7):1276-1288.
[2]Yang Y,Amo A,Wei D,et al. Large-scale integration of meta-QTL and genome-wide association study discovers the genomic regions and candidate genes for yield and yield-related traits in bread wheat[J]. Theoretical and Applied Genetics,2021,134(9):3083-3109.
[3]Cao S H,Xu D A,Hanif M,et al. Genetic architecture underpinning yield component traits in wheat[J]. Theoretical and Applied Genetics,2020,133(6):1811-1823.
[4]Li T,Deng G B,Su Y,et al. Genetic dissection of quantitative trait loci for grain size and weight by high-resolution genetic mapping in bread wheat (Triticum aestivum L.)[J]. Theoretical and Applied Genetics,2022,135(1):257-271.
[5]Li F J,Wen W E,He Z H,et al. Genome-wide linkage mapping of yield-related traits in three Chinese bread wheat populations using high-density SNP markers[J]. Theoretical and Applied Genetics,2018,131(9):1903-1924.
[6]王晖,兰进好,田纪春. 不同发育时期小麦粒重性状QTL的动态分析[J]. 植物遗传资源学报,2012,13(6):1055-1060.
[7]Yang L,Zhao D H,Meng Z L,et al. QTL mapping for grain yield-related traits in bread wheat via SNP-based selective genotyping[J]. Theoretical and Applied Genetics,2020,133(3):857-872.
[8]周小鸿,马建,罗伟,等. 西藏半野生小麦粒型性状的QTL定位[J]. 麦类作物学报,2016,36(1):27-35.
[9]Liao S M,Xu Z B,Fan X L,et al. Genetic dissection and validation of a major QTL for grain weight on chromosome 3B in bread wheat (Triticum aestivum L.)[J]. Journal of Integrative Agriculture,2024,23(1):77-92.
[10]Ji G S,Xu Z B,Fan X L,et al. Identification and validation of major QTL for grain size and weight in bread wheat (Triticum aestivum L.)[J]. The Crop Journal,2023,11(2):564-572.
[11]Wang M M,Geng J,Zhang Z,et al. Fine mapping and characterization of a major QTL for grain length,QGl.cau-2D.1,that has pleiotropic effects in synthetic allohexaploid wheat[J]. Journal of Integrative Agriculture,2024,23(9):2911-2922.
[12]Zhao R H,Liu B L,Jiang Z N,et al. Comparative analysis of genetic effects of wheat-Dasypyrum villosum translocations T6V#2S·6AL and T6V#4S·6DL[J]. Plant Breeding,2019,138(5):503-512.
[13]Balakrishnan N,Bhattacharya R. Revisiting best linear unbiased estimation of location-scale parameters based on optimally selected order statistics using compound design[J]. Methodology and Computing in Applied Probability,2022,24(3):1891-1915.
[14]Meng L,Li H H,Zhang L Y,et al. QTL IciMapping:Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations[J]. The Crop Journal,2015,3(3):269-283.
[15]Ma J,Ding P Y,Liu J J,et al. Correction to:Identification and validation of a major and stably expressed QTL for spikelet number per spike in bread wheat[J]. Theoretical and Applied Genetics,2020,133(1):367.
[16]Voorrips R E. MapChart:software for the graphical presentation of linkage maps and QTLs[J]. The Journal of Heredity,2002,93(1):77-78.
[17]Mohler V,Albrecht T,Castell A,et al. Considering causal genes in the genetic dissection of kernel traits in common wheat[J]. Journal of Applied Genetics,2016,57(4):467-476.
[18]曹鸣苏. 小麦粒长主效QTL-qKl-1BL的精细定位和候选基因分析[D]. 烟台:鲁东大学,2023:21-24.
[19]姜朋,张旭,吴磊,等. 宁麦9号/扬麦158重组自交系群体产量性状的遗传解析[J]. 作物学报,2021,47(5):869-881.
[20]Ramya P,Chaubal A,Kulkarni K,et al. QTL mapping of 1000-kernel weight,kernel length,and kernel width in bread wheat (Triticum aestivum L.)[J]. Journal of Applied Genetics,2010,51(4):421-429.
[21]郝敏. 普通小麦品系06Dn23重要性状QTL遗传解析及种质创制[D]. 武汉:华中农业大学,2022:55-57.
[22]李涛. 小麦穗型和粒型形成的遗传基础解析[D]. 雅安:四川农业大学,2021:79-82.
[23]张泽源,李玥,赵文莎,等. 小麦粒重相关性状的QTL定位及分子标记的开发[J]. 中国农业科学,2023,56(21):4137-4149.
[1]何震天,张容,王建华,等.小麦扬辐麦4号高产表现及配套栽培技术[J].江苏农业科学,2013,41(04):69.
[2]缪建国,于莎,李锦霞,等.小麦扬辐麦4号特征特性及超高产栽培技术[J].江苏农业科学,2013,41(04):75.
[3]孙苏阳,李海军,王永军,等.高产广适多抗小麦主推品种淮麦25的特征特性及
高产栽培技术[J].江苏农业科学,2013,41(04):93.
[4]孙苏阳,李海军,王永军,等.高产小麦新品种淮麦32的选育及栽培技术[J].江苏农业科学,2013,41(05):83.
Sun Suyang,et al.Breeding and cultivation techniques of a new wheat cultivar “Huaimai No.32”[J].Jiangsu Agricultural Sciences,2013,41(8):83.
[5]刘亚柏.有机水稻—红花草轮作对有机稻产量及土壤肥力的影响[J].江苏农业科学,2014,42(12):72.
Liu Yabo,et al.Effects of organic rice-clover rotation on yield and soil fertility of organic rice[J].Jiangsu Agricultural Sciences,2014,42(8):72.
[6]杜菲,郑慧,李宏军.以还原糖含量为指标的膨化小麦辅料麦汁糖化工艺优化[J].江苏农业科学,2014,42(11):306.
Du Fei,et al(0).Optimization of saccharification process of puffed wheat wort taking reducing sugar content as indicator[J].Jiangsu Agricultural Sciences,2014,42(8):306.
[7]徐艳,江建敏,国骏,等.黄瓜褐斑病菌菌丝蛋白对小麦种子萌发、生长及抗旱性的影响[J].江苏农业科学,2014,42(11):159.
Xu Yan,et al(9).Effects of cucumber brown spot pathogen mycelium protein on seed germination,growth and drought resistance of wheat[J].Jiangsu Agricultural Sciences,2014,42(8):159.
[8]郑光耀,高丽萍,尹有干,等.冷杉针叶三萜酸在小麦生产上的应用[J].江苏农业科学,2014,42(11):98.
Zheng Guangyao,et al(98).Application of triterpene acids from fir needles in wheat production[J].Jiangsu Agricultural Sciences,2014,42(8):98.
[9]钱宏兵,朱德进,于倩倩.氮素营养水平对中筋小麦扬麦16产量和氮素吸收的影响[J].江苏农业科学,2013,41(06):71.
Qian Hongbing,et al.Effects of nitrogen nutrition levels on yield and nitrogen uptake of medium gluten wheat cultivar “Yangmai 16”[J].Jiangsu Agricultural Sciences,2013,41(8):71.
[10]吕艳伟,何文慧,陈雨鸥,等.盐胁迫对小麦幼苗光合色素含量和细胞膜的影响[J].江苏农业科学,2013,41(06):74.
Lü Yanwei,et al.Effects of salt stress on photosynthetic chlorophyll content and cell membrane in wheat[J].Jiangsu Agricultural Sciences,2013,41(8):74.