|本期目录/Table of Contents|

[1]梁倩,刘颖,石如晴,等.小麦粒重和粒型相关QTL定位及遗传效应分析[J].江苏农业科学,2025,53(8):122-130.
 Liang Qian,et al.Localization and genetic effects analysis of QTL associated with wheat grain weight and shape[J].Jiangsu Agricultural Sciences,2025,53(8):122-130.
点击复制

小麦粒重和粒型相关QTL定位及遗传效应分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第53卷
期数:
2025年第8期
页码:
122-130
栏目:
遗传育种与耕作栽培
出版日期:
2025-04-20

文章信息/Info

Title:
Localization and genetic effects analysis of QTL associated with wheat grain weight and shape
作者:
梁倩12刘颖123石如晴12徐晓晓12陈立铖12付路平12别同德3刘炳亮12
1.江苏省作物基因组学与分子育种重点实验室/植物功能基因组学教育部重点实验室/江苏省作物遗传生理重点实验室/扬州大学农学院,江苏扬州 225009; 2.扬州大学/江苏省粮食作物现代产业技术协同创新中心,江苏扬州 225009; 3.江苏里下河地区农业科学研究所/农业农村部长江中下游小麦生物学与遗传育种重点实验室,江苏扬州225007
Author(s):
Liang Qianet al
关键词:
小麦粒重粒型QTL定位
Keywords:
-
分类号:
S512.103.2
DOI:
-
文献标志码:
A
摘要:
挖掘小麦粒重、粒型相关QTL并解析其优异位点对小麦产量、品质的提高具有重要意义。以扬麦18和扬麦22双亲构建的重组自交系群体为材料,利用小麦100K液相芯片对该群体进行基因分型及遗传图谱构建,通过对粒重及粒型相关性状进行QTL定位并解析其遗传效应。结果表明,粒重与粒型相关性状间呈极显著相关;分别鉴定到9、13个稳定遗传的粒重、粒型相关QTL位点。其中,千粒重QTL的LOD值介于2.76~43.20之间,单个QTL可解释1.12%~23.08%的表型变异;粒型QTL的LOD值介于2.68~45.44之间,单个QTL可解释0.67%~31.93%的表型变异。其中,千粒重QTL QTkw-2D.1、粒长QTL QKl-1B和QKl-2D、粒宽QTL QKw-2D定位区间与已有研究相同或相似。同时在1B、2D、6A染色体上检测到多个一因多效QTL位点;其中,主效位点QTkw-6A/QKl-6A/QKw-6A可分别解释千粒重(10.12%~23.08%)、粒长(4.00%~24.29%)和粒宽(7.41%~17.52%)的表型变异,其增效等位基因来自扬麦18。遗传效应分析发现携带粒重、粒型主效QTL的家系在不同环境下均可显著提高其表型值。本研究可为小麦籽粒形态的定向改良及高产分子设计育种提供有效的基因资源和理论支持。
Abstract:
-

参考文献/References:

[1]Molero G,Joynson R,Pinera-Chavez F J,et al. Elucidating the genetic basis of biomass accumulation and radiation use efficiency in spring wheat and its role in yield potential[J]. Plant Biotechnology Journal,2019,17(7):1276-1288.
[2]Yang Y,Amo A,Wei D,et al. Large-scale integration of meta-QTL and genome-wide association study discovers the genomic regions and candidate genes for yield and yield-related traits in bread wheat[J]. Theoretical and Applied Genetics,2021,134(9):3083-3109.
[3]Cao S H,Xu D A,Hanif M,et al. Genetic architecture underpinning yield component traits in wheat[J]. Theoretical and Applied Genetics,2020,133(6):1811-1823.
[4]Li T,Deng G B,Su Y,et al. Genetic dissection of quantitative trait loci for grain size and weight by high-resolution genetic mapping in bread wheat (Triticum aestivum L.)[J]. Theoretical and Applied Genetics,2022,135(1):257-271.
[5]Li F J,Wen W E,He Z H,et al. Genome-wide linkage mapping of yield-related traits in three Chinese bread wheat populations using high-density SNP markers[J]. Theoretical and Applied Genetics,2018,131(9):1903-1924.
[6]王晖,兰进好,田纪春. 不同发育时期小麦粒重性状QTL的动态分析[J]. 植物遗传资源学报,2012,13(6):1055-1060.
[7]Yang L,Zhao D H,Meng Z L,et al. QTL mapping for grain yield-related traits in bread wheat via SNP-based selective genotyping[J]. Theoretical and Applied Genetics,2020,133(3):857-872.
[8]周小鸿,马建,罗伟,等. 西藏半野生小麦粒型性状的QTL定位[J]. 麦类作物学报,2016,36(1):27-35.
[9]Liao S M,Xu Z B,Fan X L,et al. Genetic dissection and validation of a major QTL for grain weight on chromosome 3B in bread wheat (Triticum aestivum L.)[J]. Journal of Integrative Agriculture,2024,23(1):77-92.
[10]Ji G S,Xu Z B,Fan X L,et al. Identification and validation of major QTL for grain size and weight in bread wheat (Triticum aestivum L.)[J]. The Crop Journal,2023,11(2):564-572.
[11]Wang M M,Geng J,Zhang Z,et al. Fine mapping and characterization of a major QTL for grain length,QGl.cau-2D.1,that has pleiotropic effects in synthetic allohexaploid wheat[J]. Journal of Integrative Agriculture,2024,23(9):2911-2922.
[12]Zhao R H,Liu B L,Jiang Z N,et al. Comparative analysis of genetic effects of wheat-Dasypyrum villosum translocations T6V#2S·6AL and T6V#4S·6DL[J]. Plant Breeding,2019,138(5):503-512.
[13]Balakrishnan N,Bhattacharya R. Revisiting best linear unbiased estimation of location-scale parameters based on optimally selected order statistics using compound design[J]. Methodology and Computing in Applied Probability,2022,24(3):1891-1915.
[14]Meng L,Li H H,Zhang L Y,et al. QTL IciMapping:Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations[J]. The Crop Journal,2015,3(3):269-283.
[15]Ma J,Ding P Y,Liu J J,et al. Correction to:Identification and validation of a major and stably expressed QTL for spikelet number per spike in bread wheat[J]. Theoretical and Applied Genetics,2020,133(1):367.
[16]Voorrips R E. MapChart:software for the graphical presentation of linkage maps and QTLs[J]. The Journal of Heredity,2002,93(1):77-78.
[17]Mohler V,Albrecht T,Castell A,et al. Considering causal genes in the genetic dissection of kernel traits in common wheat[J]. Journal of Applied Genetics,2016,57(4):467-476.
[18]曹鸣苏. 小麦粒长主效QTL-qKl-1BL的精细定位和候选基因分析[D]. 烟台:鲁东大学,2023:21-24.
[19]姜朋,张旭,吴磊,等. 宁麦9号/扬麦158重组自交系群体产量性状的遗传解析[J]. 作物学报,2021,47(5):869-881.
[20]Ramya P,Chaubal A,Kulkarni K,et al. QTL mapping of 1000-kernel weight,kernel length,and kernel width in bread wheat (Triticum aestivum L.)[J]. Journal of Applied Genetics,2010,51(4):421-429.
[21]郝敏. 普通小麦品系06Dn23重要性状QTL遗传解析及种质创制[D]. 武汉:华中农业大学,2022:55-57.
[22]李涛. 小麦穗型和粒型形成的遗传基础解析[D]. 雅安:四川农业大学,2021:79-82.
[23]张泽源,李玥,赵文莎,等. 小麦粒重相关性状的QTL定位及分子标记的开发[J]. 中国农业科学,2023,56(21):4137-4149.

相似文献/References:

[1]何震天,张容,王建华,等.小麦扬辐麦4号高产表现及配套栽培技术[J].江苏农业科学,2013,41(04):69.
[2]缪建国,于莎,李锦霞,等.小麦扬辐麦4号特征特性及超高产栽培技术[J].江苏农业科学,2013,41(04):75.
[3]孙苏阳,李海军,王永军,等.高产广适多抗小麦主推品种淮麦25的特征特性及 高产栽培技术[J].江苏农业科学,2013,41(04):93.
[4]孙苏阳,李海军,王永军,等.高产小麦新品种淮麦32的选育及栽培技术[J].江苏农业科学,2013,41(05):83.
 Sun Suyang,et al.Breeding and cultivation techniques of a new wheat cultivar “Huaimai No.32”[J].Jiangsu Agricultural Sciences,2013,41(8):83.
[5]刘亚柏.有机水稻—红花草轮作对有机稻产量及土壤肥力的影响[J].江苏农业科学,2014,42(12):72.
 Liu Yabo,et al.Effects of organic rice-clover rotation on yield and soil fertility of organic rice[J].Jiangsu Agricultural Sciences,2014,42(8):72.
[6]杜菲,郑慧,李宏军.以还原糖含量为指标的膨化小麦辅料麦汁糖化工艺优化[J].江苏农业科学,2014,42(11):306.
 Du Fei,et al(0).Optimization of saccharification process of puffed wheat wort taking reducing sugar content as indicator[J].Jiangsu Agricultural Sciences,2014,42(8):306.
[7]徐艳,江建敏,国骏,等.黄瓜褐斑病菌菌丝蛋白对小麦种子萌发、生长及抗旱性的影响[J].江苏农业科学,2014,42(11):159.
 Xu Yan,et al(9).Effects of cucumber brown spot pathogen mycelium protein on seed germination,growth and drought resistance of wheat[J].Jiangsu Agricultural Sciences,2014,42(8):159.
[8]郑光耀,高丽萍,尹有干,等.冷杉针叶三萜酸在小麦生产上的应用[J].江苏农业科学,2014,42(11):98.
 Zheng Guangyao,et al(98).Application of triterpene acids from fir needles in wheat production[J].Jiangsu Agricultural Sciences,2014,42(8):98.
[9]钱宏兵,朱德进,于倩倩.氮素营养水平对中筋小麦扬麦16产量和氮素吸收的影响[J].江苏农业科学,2013,41(06):71.
 Qian Hongbing,et al.Effects of nitrogen nutrition levels on yield and nitrogen uptake of medium gluten wheat cultivar “Yangmai 16”[J].Jiangsu Agricultural Sciences,2013,41(8):71.
[10]吕艳伟,何文慧,陈雨鸥,等.盐胁迫对小麦幼苗光合色素含量和细胞膜的影响[J].江苏农业科学,2013,41(06):74.
 Lü Yanwei,et al.Effects of salt stress on photosynthetic chlorophyll content and cell membrane in wheat[J].Jiangsu Agricultural Sciences,2013,41(8):74.

备注/Memo

备注/Memo:
收稿日期:2025-01-13
基金项目:江苏里下河地区农业科学研究所科研专项[编号:SJ(22)114];国家自然科学基金青年科学基金(编号:32101771);江苏省自然科学基金(编号:BK20210795)。
作者简介:梁倩(2000—),女,河南三门峡人,硕士研究生,主要从事小麦遗传育种研究。E-mail:3089962602@qq.com。
通信作者:刘炳亮,博士,助理研究员,主要从事小麦遗传育种研究。E-mail:blliu@yzu.edu.cn。
更新日期/Last Update: 2025-04-20