|本期目录/Table of Contents|

[1]彭静静.植物病原真菌中MAPK级联通路研究进展[J].江苏农业科学,2014,42(09):11-15.
 Peng Jingjing.Research progress of MAPK cascades in phytopathogenic fungi[J].Jiangsu Agricultural Sciences,2014,42(09):11-15.
点击复制

植物病原真菌中MAPK级联通路研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第42卷
期数:
2014年09期
页码:
11-15
栏目:
专论
出版日期:
2014-09-25

文章信息/Info

Title:
Research progress of MAPK cascades in phytopathogenic fungi
作者:
彭静静
泰山学院生物与酿酒工程学院,山东泰安 271021
Author(s):
Peng Jingjing
关键词:
MAPK植物病原真菌信号通路cross-talk应答
Keywords:
-
分类号:
S432.4+4
DOI:
-
文献标志码:
A
摘要:
尽管真菌和动植物的生活方式不同,但是它们具有很多类似的信号通路,调节各自细胞活动。在这些进化保守的信号通路中,MAPK信号通路通过蛋白磷酸化方式调控,是十分重要的信号通路。目前对很多植物病原真菌的MAPK级联激酶研究表明,MAPK级联通路涉及该类真菌的有性生殖、菌丝侵染、细胞壁完整、环境胁迫、致病毒力等方面。MAPK信号通路是一个复杂的信号网路,植物病原真菌通过某些重要基因实现不同MAPK通路之间的对话,以应答寄主对自身做出的防御反应。介绍了植物病原真菌的3条MAPK级联通路和它们之间存在的cross-talk的研究进展,并阐述了MAPK信号通路在植物病原真菌侵染和寄主防御中的重要作用。
Abstract:
-

参考文献/References:

[1]Rispail N,Soanes D M,Ant C,et al. Comparative genomics of MAP kinase and calcium-calcineurin signalling components in plant and human pathogenic fungi[J]. Fungal Genetics and Biology,2009,46(4):287-298.
[2]Hamel L P,Nicole M C,Duplessis S,et al. Mitogen-activated protein kinase signaling in plant-interacting fungi:distinct messages from conserved messengers[J]. Plant Cell,2012,24(4):1327-1351.
[3]Gustin M C,Albertyn J,Alexander M,et al. MAP kinase pathways in the yeast Saccharomyces cerevisiae[J]. Microbiology and Molecular Biology Reviews,1998,62(4):1264-1300.
[4]Waskiewicz A J,Cooper J A. Mitogen and stress response pathways:MAP kinase cascades and phosphatase regulation in mammals and yeast[J]. Current Opinion in Cell Biology,1995,7(6):798-805.
[5]Banuett F,Herskowitz I. Identification of fuz7,an Ustilago maydis MEK/MAPKK homolog required for a-locus-dependent and -independent steps in the fungal Life cycle[J]. Genes & Development,1994,8(12):1367-1378.
[6]Mayorga M E,Gold S E. A MAP kinase encoded by the ubc3 gene of Ustilago maydis is required for filamentous growth and full virulence[J]. Molecular Microbiology,1999,34(3):485-497.
[7]Müller P,Katzenberger J D,Loubradou G,et al. Guanyl nucleotide exchange factor Sql2 and Ras2 regulate filamentous growth in Ustilago maydis[J]. Eukaryotic Cell,2003,2(3):609-617.
[8]Brachmann A,Schirawski J,Müller P,et al. An unusual MAP kinase is required for efficient penetration of the plant surface by Ustilago maydis[J]. EMBO Journal,2003,22(9):2199-2210.
[9]Brefort T,Doehlemann G,Mendoza-Mendoza A A,et al. Ustilago maydis as a pathogen[J]. Annual Review of Phytopathology,2009,47:423-445.
[10]Zhao X H,Mehrabi R,Xu J R. Mitogen-activated protein kinase pathways and fungal pathogenesis[J]. Eukaryotic Cell,2007,6(10):1701-1714.
[11]Andrews D L,Egan J D,Mayorga M E,et al. The Ustilago maydis ubc4 and ubc5 genes encode members of a MAP kinase cascade required for filamentous growth[J]. Molecular Plant-Microbe Interactions,2000,13(7):781-786.
[12]Talbot N J. On the trail of a cereal killer:Exploring the biology of Magnaporthe grisea[J]. Annual Review of Microbiology,2003,57:177-202.
[13]Wilson R A,Talbot N J. Under pressure:investigating the biology of plant infection by Magnaporthe oryzae[J]. Nature Reviews Microbiology,2009,7(3):185-195.
[14]Xu J R,Hamer J E. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea[J]. Genes & Development,1996,10(21):2696-2706.
[15]Bruno K S,Tenjo F,Li L,et al. Cellular localization and role of kinase activity of PMK1 in Magnaporthe grisea[J]. Eukaryotic Cell,2004,3(6):1525-1532.
[16]Thines E,Weber R W,Talbot N J. MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor Generation by Magnaporthe grisea[J]. Plant Cell,2000,12(9):1703-1718.
[17]Zhao X H,Kim Y,Park G,et al. A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea[J]. Plant Cell,2005,17(4):1317-1329.
[18]Park G,Xue C Y,Zhao X H,et al. Multiple upstream signals converge on the adaptor protein Mst50 in Magnaporthe grisea[J]. Plant Cell,2006,18(10):2822-2835.
[19]Xu J R,Staiger C J,Hamer J E. Inactivation of the mitogen-activated protein kinase Mps1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses[J]. Proceedings of the National Academy of Sciences of the United States of America,1998,95(21):12713-12718.
[20]Fujikawa T,Kuga Y,Yano S,et al. Dynamics of cell wall components of Magnaporthe grisea during infectious structure development[J]. Molecular Microbiology,2009,73(4):553-570.
[21]Kojima K,Kikuchi T,Takano Yoshitaka,et al. The mitogen-activated protein kinase gene MAF1 is essential for the early differentiation phase of appressorium formation in Colletotrichum lagenarium[J]. Molecular Plant-Microbe Interactions,2002,15(12):1268-1276.
[22]Mey G,Held K,Scheffer J,et al. CPMK2,an SLT2-homologous mitogen-activated protein (MAP) kinase,is essential for pathogenesis of Claviceps purpurea on rye:evidence for a second conserved pathogenesis-related MAP kinase cascade in phytopathogenic fungi[J]. Molecular Microbiology,2002,46(2):305-318.
[23]Rui O,Hahn M. The Slt2-type MAP kinase Bmp3 of Botrytis cinerea is required for normal saprotrophic growth,conidiation,plant surface sensing and host tissue colonization[J]. Molecular Plant Pathology,2007,8(2):173-184.
[24]Mehrabi R,Zwiers L H,de Waard M A,et al. MgHog1 regulates dimorphism and pathogenicity in the fungal wheat pathogen Mycosphaerella graminicola[J]. Molecular Plant-Microbe Interactions,2006,19(11):1262-1269.
[25]Hou Z M,Xue C Y,Peng Y L,et al. A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility,heterokaryon formation,and plant infection[J]. Molecular Plant-Microbe Interactions,2002,15(11):1119-1127.
[26]Carbó N,Pérez-Martín J. Activation of the cell wall integrity pathway promotes escape from G2 in the fungus Ustilago maydis[J]. PLoS Genetics,2010,6(7):e1001009.
[27]Caffrey D R,Oneill L A,Shields D C. The evolution of the MAP kinase pathways:coduplication of interacting proteins leads to new signaling cascades[J]. Journal of Molecular Evolution,1999,49(5):567-582.
[28]Orourke S M,Herskowitz I,Oshea E K. Yeast go the whole HOG for the hyperosmotic response[J]. Trends in Genetics,2002,18(8):405-412.
[29]Dixon K P,Xu J R,Smirnoff N,et al. Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea[J]. Plant Cell,1999,11(10):2045-2058.
[30]Kojima K,Takano Y,Yoshimi A,et al. Fungicide activity through activation of a fungal signalling pathway[J]. Molecular Microbiology,2004,53(6):1785-1796.
[31]Park S M,Choi E S,Kim M J,et al. Characterization of HOG1 homologue,CpMK1,from Cryphonectria parasitica and evidence for hypovirus-mediated perturbation of its phosphorylation in response to hypertonic stress[J]. Molecular Microbiology,2004,51(5):1267-1277.
[32]Moriwaki A,Kubo E,Arase S,et al. Disruption of SRM1,a mitogen-activated protein kinase gene,affects sensitivity to osmotic and ultraviolet stressors in the phytopathogenic fungus Bipolaris oryzae[J]. FEMS Microbiology Letters,2006,257(2):253-261.
[33]Segmüller N,Ellendorf U,Tudzynski B,et al. BcSAK1,a stress-activated mitogen-activated protein kinase,is involved in vegetative differentiation and pathogenicity in Botrytis cinerea[J]. Eukaryotic Cell,2007,6(2):211-221.
[34]Fuchs B B,Mylonakis E. Our paths might cross:the role of the fungal cell wall integrity pathway in stress response and cross talk with other stress response pathways[J]. Eukaryotic Cell,2009,8(11):1616-1625.
[35]Birkaya B,Maddi A,Joshi J,et al. Role of the cell wall integrity and filamentous growth mitogen-activated protein kinase pathways in cell wall remodeling during filamentous growth[J]. Eukaryotic Cell,2009,8(8):1118-1133.
[36]Rodríguez-Pea J M,García R,Nombela C,et al. The high-osmolarity glycerol (HOG) and cell wall integrity (CWI) signalling pathways interplay:a yeast dialogue between MAPK routes[J]. Yeast,2010,27(8):495-502.
[37]Jiang B,Ram A F,Sheraton J,et al. Regulation of cell wall beta-glucan assembly:PTC1 negatively affects PBS2 action in a pathway that includes modulation of EXG1 transcription[J]. Molecular & General Genetics,1995,248(3):260-269.
[38]Lai M H,Silverman S J,Gaughran J P,et al. Multiple copies of PBS2,MHP1 or LRE1 produce glucanase resistance and other cell wall effects in Saccharomyces cerevisiae[J]. Yeast,1997,13(3):199-213.
[39]Reynolds T B,Hopkins B D,Lyons M R,et al. The high osmolarity glycerol response (HOG) MAP kinase pathway controls localization of a yeast golgi glycosyltransferase[J]. Journal of Cell Biology,1998,143(4):935-946.
[40]Kronstad J,De Maria A D,Funnell D,et al. Signaling via cAMP in fungi:interconnections with mitogen-activated protein kinase pathways[J]. Archives of Microbiology,1998,170(6):395-404.
[41]Madhani H D,Fink G R. The control of filamentous differentiation and virulence in fungi[J]. Trends in Cell Biology,1998,8(9):348-353.
[42]Gao M H,Liu J M,Bi D L,et al. MEKK1,MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants[J]. Cell Research,2008,18(12):1190-1198.
[43]Qiu J L,Zhou L,Yun B W,et al. Arabidopsis mitogen-activated protein kinase kinases MKK1 and MKK2 have overlapping functions in defense signaling mediated by MEKK1,MPK4,and MKS1[J]. Plant Physiology,2008,148(1):212-222.
[44]Asai T,Tena G,Plotnikova J,et al. MAP kinase signalling cascade in Arabidopsis innate immunity[J]. Nature,2002,415(6875):977-983.
[45]Ren D T,Liu Y D,Yang K Y,et al. A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(14):5638-5643.
[46]Lanver D,Mendoza-Mendoza A,Brachmann A,et al. Sho1 and Msb2-related proteins regulate appressorium development in the smut fungus Ustilago maydis[J]. Plant Cell,2010,22(6):2085-2101.
[47]Liu W D,Zhou X Y,Li G T,et al. Multiple plant surface signals are sensed by different mechanisms in the rice blast fungus for appressorium formation[J]. PLoS Pathogens,2011,7(1):e1001261.
[48]Pérez-Nadales E,Di Pietro A. The membrane mucin Msb2 regulates invasive growth and plant infection in Fusarium oxysporum[J]. Plant Cell,2011,23(3):1171-1185.
[49]Yoshimi A,Kojima K,Takano Y,et al. Group III histidine kinase is a positive regulator of Hog1-type mitogen-activated protein kinase in filamentous fungi[J]. Eukaryotic Cell,2005,4(11):1820-1828.
[50]Lin C H,Chung K R. Specialized and shared functions of the histidine kinase- and HOG1 MAP kinase-mediated signaling pathways in Alternaria alternata,a filamentous fungal pathogen of citrus[J]. Fungal Genetics and Biology,2010,47(10):818-827.
[51]Müller P,Aichinger C,Feldbrügge M,et al. The MAP kinase kpp2 regulates mating and pathogenic development in Ustilago maydis[J]. Molecular Microbiology,1999,34(5):1007-1017.
[52]Kaffarnik F,Müller P,Leibundgut M,et al. PKA and MAPK phosphorylation of Prf1 allows promoter discrimination in Ustilago maydis[J]. EMBO Journal,2003,22(21):5817-5826.
[53]Park G,Bruno K S,Staiger C J,et al. Independent genetic mechanisms mediate turgor generation and penetration peg formation during plant infection in the rice blast fungus[J]. Molecular Microbiology,2004,53(6):1695-1707.
[54]Park G,Xue C Y,Zheng L,et al. MST12 regulates infectious growth but not appressorium formation in the rice blast fungus Magnaporthe grisea[J]. Molecular Plant-Microbe Interactions,2002,15(3):183-192.
[55]Wong S,Hoi J,Dumas B. Ste12 and Ste12-like proteins,fungal transcription factors regulating development and pathogenicity[J]. Eukaryotic Cell,2010,9(4):480-485.
[56]Li G T,Zhou X Y,Kong L G,et al. MoSfl1 is important for virulence and heat tolerance in Magnaporthe oryzae[J]. PLoS One,2011,6(5):e19951.

相似文献/References:

[1]刘雪,关丽杰.苯丙烯菌酮对水稻稻瘟病病原真菌细胞壁膜的作用[J].江苏农业科学,2019,47(22):117.
 Liu Xue,et al.Antibacterial effects of isobavachalcone on cell wall and membrane of Magnaporthe grisea[J].Jiangsu Agricultural Sciences,2019,47(09):117.
[2]汪少丽,王英姿,王洪涛,等.γ-聚谷氨酸对6种植物病原真菌的室内毒力测定[J].江苏农业科学,2020,48(05):110.
 Wang Shaoli,et al.Indoor toxicity determination of γ-polyglutamic acid to six plant pathogenic funguses[J].Jiangsu Agricultural Sciences,2020,48(09):110.
[3]夏雄飞,潘俊良,韩长志.CRISPR/Cas9基因编辑技术在植物病原真菌中的应用研究进展[J].江苏农业科学,2022,50(12):22.
 Xia Xiongfei,et al.Research progress on application of CRISPR/Cas9 gene editing technology in plant pathogenic fungi[J].Jiangsu Agricultural Sciences,2022,50(09):22.

备注/Memo

备注/Memo:
收稿日期:2014-01-24
基金项目:山东省泰安市科技发展计划(编号:20132094);泰山学院博士科研启动基金(编号:Y-01-2013001)。
作者简介:彭静静(1983—),女,山东泰安人,博士,讲师,研究方向为微生物基因工程和代谢工程。E-mail:zjingjing1983@163.com。
更新日期/Last Update: 2014-09-25