|本期目录/Table of Contents|

[1]赵燕,李莎莎,柳晨意,等.铝胁迫对刺槐幼苗光合色素和矿质元素含量的影响[J].江苏农业科学,2015,43(04):200-202.
 Zhao Yan,et al.Effects of aluminum stress on photosynthetic pigment content and mineral elements content in Robinia pseudoacacia seedlings[J].Jiangsu Agricultural Sciences,2015,43(04):200-202.
点击复制

铝胁迫对刺槐幼苗光合色素和矿质元素含量的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第43卷
期数:
2015年04期
页码:
200-202
栏目:
园艺与林学
出版日期:
2015-04-25

文章信息/Info

Title:
Effects of aluminum stress on photosynthetic pigment content and mineral elements content in Robinia pseudoacacia seedlings
作者:
赵燕1 李莎莎2 柳晨意1 黄勇2 张文会2 吕艳伟2
1.聊城大学农学院,山东聊城 252059; 2.聊城大学生命科学学院,山东聊城 252059
Author(s):
Zhao Yanet al
关键词:
铝胁迫刺槐光合色素矿质元素
Keywords:
-
分类号:
Q945.78
DOI:
-
文献标志码:
A
摘要:
以1年生盆栽刺槐幼苗为试材,采用温室控制,研究0、0.5、1、2 mmol/L 铝胁迫对刺槐幼苗光合色素和矿质元素含量的影响,结果表明,0.5、1、2 mmol/L 3种铝浓度胁迫的刺槐幼苗,叶绿素a、叶绿素b、总叶绿素和类胡萝卜素含量均显著增加,且随着铝浓度增大而增加,叶绿素a/b显著降低,且随着铝浓度增大而减小,刺槐幼苗根、茎中铝元素含量均显著高于未胁迫处理的;2 mmol/L铝浓度胁迫的刺槐幼苗根、茎、叶,其碳元素含量均显著低于未胁迫处理的,而1 mmol/L铝处理仅叶片中碳元素含量显著低于未胁迫处理的;除05、1 mmol/L铝处理下的刺槐幼苗根氮元素含量没有显著变化外,3种铝浓度胁迫处理的刺槐根、茎、叶氮元素含量均显著低于未胁迫处理的;与未胁迫处理相比,0.5 mmol/L铝胁迫处理的刺槐幼苗叶片碳氮比和0.5、1 mmol/L 铝胁迫处理的刺槐幼苗茎碳氮比均显著增加。刺槐能够忍耐较低的铝浓度胁迫,并能在高浓度胁迫下累积铝,可通过栽植刺槐对一些铝污染地区进行植物修复。
Abstract:
-

参考文献/References:

[1]Rout G,Sanantaray S,Das P. Aluminium toxicity in plants:a review[J]. Agronomic,EDP Sciences,2001,21(1):3-21.
[2]应小芳,刘鹏. 铝胁迫对大豆叶片光合特性的影响[J]. 应用生态学报,2005,16(1):166-170.
[3]赵会娥,贺立源,章爱群,等. 铝胁迫对植物光合作用的影响及其机理的研究进展[J]. 华中农业大学学报,2008,27(1):155-160.
[4]胡彦,何虎翼,何龙飞. 高等植物铝胁迫研究新进展[J]. 文山师范高等专科学校学报,2006,19(1):74-78.
[5]李洪建,王孟本,陈良富,等. 刺槐林水分生态研究[J]. 植物生态学报,1996,20(2):151-158.
[6]Feng Z,Dyckmans J,Flessa H. Effects of elevated carbon dioxide concentration on growth and N2 fixation of young Robinia pseudoacacia[J]. Tree Physiology,2004,24(3):323-330.
[7]Ranney T G,Whitlow T H,Bassuk N L. Response of five temperate deciduous tree species to water stress[J]. Tree Physiology,1990,6(4):439-448.
[8]Park S,Han K H. An auxin-repressed gene (RpARP) from black locust (Robinia pseudoacacia) is posttranscriptionally regulated and negatively associated with shoot elongation[J]. Tree Physiology,2003,23(12):815-823.
[9]Wellburn A R. The spectra determination of chlorophylls a and b,as well as total carotenoids,using various solvents with spectrophotometers of different resolution[J]. Journal of Plant Physiology,1994,144(3):307-313.
[10] Nelson D W, Sommers L E. Total carbon, organic carbon and organic matter[M]//Page A L, Miller R H, Keeney D R. Methods of soil analysis:Part 2. Madison:American Society of Agronomy and Soil Science,1982:539-579.
[11]Schurr U,Heckenberger U,Herdel K,et al. Leaf development in Ricinus communis during drought stress:dynamics of growth processes,of cellular structure and of sink-source transition[J]. J Exp Bot,2000,51(350):1515-1529.
[12]Renaut J,Hoffmann L,Hausman J F. Biochemical and physiological mechanisms related to cold acclimation and enhanced freezing tolerance in poplar plantlets[J]. Physiologia Plantarum,2005,125(1):82-94.
[13]Jiang H X,Chen L S,Zheng J G,et al. Aluminum-induced effects on photosystem Ⅱ photochemistry in citrus leaves assessed by the chlorophyll a fluorescence transient[J]. Tree Physiology,2008,28(12):1863-1871.
[14]Chen L S,Qi Y P,Smith B R,et al. Aluminum-induced decrease in CO2 assimilation in citrus seedlings is unaccompanied by decreased activities of key enzymes involved in CO2 assimilation[J]. Tree Physiology,2005,25(3):317-324.
[15]肖祥希. 龙眼(Dimocarpus longana Lour.)对铝胁迫的生理生化反应及其矫治[D]. 福州:福建农林大学,2002:77-78.
[16]Peixoto P H,Da Matta F M,Cambraia J. Responses of the photosynthetic apparatus to aluminum stress in two sorghum cultivars[J]. Journal of Plant Nutr,2002,25(4):821-832.
[17]Borer C H,Schaberg P G,Dehayes D H,et al. Accretion,partitioning and sequestration of calcium and aluminum in red spruce foliage:implications for tree health[J]. Tree Physiology,2004,24(9):929-939.
[18]Neales T F,Incoll L D. The control of leaf photosynthesis rate by the level of assimilate concentration in the leaf:a review of the hypothesis[J]. The Botanical Review 1968,34(2):107-125.
[19]万泉. 铝胁迫对龙眼幼苗碳水化合物含量的影响[J]. 热带作物学报,2007,28(4):10-14.
[20]Lu Y W,Duan B L,Zhang X L,et al. Differences in growth and physiological traits of Populus cathayana populations as affected by enhanced UV-B radiation and exogenous ABA[J]. Environmental and Experimental Botany,2009,66(1):100-109.
[21]Poorter H,Nagel O. The role of biomass allocation in the growth response of plants to different levels of light,CO2,nutrients and water:a quantitative review[J]. Australian Journal of Plant Physiology,2000,27:595-607.
[22]Coruzzi G,Bush D R. Nitrogen and carbon nutrient and metabolite signaling in plants[J]. Plant Physiology,2001,125(1):61-64.
[23]Martin T,Oswald O,Graham I A. Arabidopsis seedling growth,storage lipid mobilization and photosynthetic gene expression are regulated by carbon:nitrogen availability[J]. Plant Physiology,2002,128(2):472-481.

相似文献/References:

[1]崔雪梅,简君萌,李春生.铝胁迫对油菜根系及叶片生理生化指标的影响[J].江苏农业科学,2015,43(12):107.
 Cui Xuemei,et al.Effects of aluminum stress on physiological and biochemical indices of rapeseed roots and leaves[J].Jiangsu Agricultural Sciences,2015,43(04):107.
[2]孟丹,刘玲,陈露,等.外源硫化氢对铝胁迫下水稻幼苗生长及生理生化的影响[J].江苏农业科学,2014,42(06):63.
 Meng Dan,et al.Effects of exogenous hydrogen sulfide on growth and physiology of rice seedlings under aluminum stress[J].Jiangsu Agricultural Sciences,2014,42(04):63.
[3]刘强,柳正葳,龙婉婉,等.芒萁、玉米对酸铝胁迫生理响应的比较[J].江苏农业科学,2017,45(02):65.
 Liu Qiang,et al.Comparative effects of low pH value and aluminum toxicity on physiological responses between Dicranopteris dichotoma and Zea mays[J].Jiangsu Agricultural Sciences,2017,45(04):65.
[4]张晓晓,陈双双,郑婷,等.铝胁迫对虎舌红叶片活性氧代谢及光合光响应特性的影响[J].江苏农业科学,2018,46(1):72.
 Zhang Xiaoxiao,et al.Effects of aluminum stress on reactive oxygen species metabolism and photosynthetic light response characteristics of Ardisia mamillata Hance[J].Jiangsu Agricultural Sciences,2018,46(04):72.
[5]朱倩,严陶韬,周之栋,等.施用生物炭对喀斯特石灰土特性及刺槐幼苗生长的影响[J].江苏农业科学,2018,46(03):241.
 Zhu Qian,et al.Effects of biochar application on soil properties of limestone soil in karst and growth of Robinia pseudoacacia seedlings[J].Jiangsu Agricultural Sciences,2018,46(04):241.
[6]张藤子,李亚楠,马云波,等.辽西北风蚀区4个主要造林树种防风固沙功能差异及适宜立地分析[J].江苏农业科学,2019,47(01):112.
 Zhang Tengzi,et al.Difference of windbreak and sand fixation of four main afforestation tree species and suitable site analysis in wind erosion area of Northwestern Liaoning[J].Jiangsu Agricultural Sciences,2019,47(04):112.
[7]闫小红,尤云菲,周兵,等.铝胁迫对苦荞种子萌发及幼苗生长特性的影响[J].江苏农业科学,2019,47(08):68.
 Yan Xiaohong,et al.Effects of Al stress on seed germination and seedling growth of Fagopyrum tataricum[J].Jiangsu Agricultural Sciences,2019,47(04):68.
[8]吕蒙蒙,陈宇,林思祖.铝胁迫下植物生长调节剂对杉木幼苗叶绿素荧光特性的影响[J].江苏农业科学,2020,48(22):116.
 Lü Mengmeng,et al.Effects of plant growth regulators on chlorophyll fluorescence characteristics of Cunninghamia lanceolata seedlings under aluminum stress[J].Jiangsu Agricultural Sciences,2020,48(04):116.
[9]邢安琪,田志强,储睿文,等.一氧化氮对茶树不同组织响应铝胁迫的影响[J].江苏农业科学,2023,51(7):110.
 Xing Anqi,et al.Impacts of nitric oxide on response of different tissues to aluminum stress in Camellia sinensis[J].Jiangsu Agricultural Sciences,2023,51(04):110.

备注/Memo

备注/Memo:
收稿日期:2014-07-07
基金项目:国家自然科学青年基金(编号:31100456);大学生科技创新(编号:SF2013280)。
作者简介:赵燕(1977—),女,山东聊城人,硕士,讲师,从事植物逆境生理研究。Tel:(0635)8239967;E-mail:zhaoyan@lcu.edu.cn。
通信作者:吕艳伟,博士,副教授,从事植物逆境生理研究。Tel:(0635)8239910;E-mail:lvyanwei@lcu.edu.cn。
更新日期/Last Update: 2015-04-25