|本期目录/Table of Contents|

[1]刘哲,张秋萍,苏小俊,等.萝卜硫苷合成和调节相关基因研究进展[J].江苏农业科学,2015,43(06):168-170.
 Liu Zhe,et al.Research progress on related genes for regulation and synthesis of glucosinolates in radish[J].Jiangsu Agricultural Sciences,2015,43(06):168-170.
点击复制

萝卜硫苷合成和调节相关基因研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第43卷
期数:
2015年06期
页码:
168-170
栏目:
园艺与林学
出版日期:
2015-06-25

文章信息/Info

Title:
Research progress on related genes for regulation and synthesis of glucosinolates in radish
作者:
刘哲1 张秋萍2 苏小俊1 娄丽娜1
1.江苏省农业科学院蔬菜研究所,江苏南京210014; 2.江苏省江阴市农业技术推广中心,江苏江阴214431
Author(s):
Liu Zheet al
关键词:
萝卜硫苷合成基因调控基因综述
Keywords:
-
分类号:
S631.101
DOI:
-
文献标志码:
A
摘要:
硫代葡萄糖苷(glucosinolates,简称硫苷)是十字花科蔬菜中一类重要的含硫阴离子的亲水性次生代谢产物,硫苷及其降解产物在植物品质、风味、抗虫、抗癌和保健等方面具有重要作用。对萝卜中硫苷的功能、硫苷合成和调控相关基因等进行了综述,以期为通过基因改良工程或表达调控手段培育高硫苷含量的萝卜新品种提供理论参考。
Abstract:
-

参考文献/References:

[1]Halkier B A,Gershenzon J. Biology and biochemistry of glucosinolates[J]. Annual Review of Plant Biology,2006,57:303-333.
[2]Grubb C D,Abel S. Glucosinolate metabolism and its control[J]. Trends in Plant Science,2006,11(2):89-100.
[3]Snderby I E,Geu-Flores F,Halkier B A. Biosynthesis of glucosinolates-gene discovery and beyond[J]. Trends in Plant Science,2010,15(5):283-290.
[4]黄界颍,马友华. 油菜硫甙特征功能及其测定方法[J].植物生理学通讯,2003,39(5):496-500.
[5]徐东辉. 白菜类作物硫代葡萄糖甙及一些主要代谢组分的遗传分析[D].北京:中国农业科学院,2007.
[6]李鲜,陈昆松,张明方,等. 十字花科植物中硫代葡萄糖苷的研究进展[J].园艺学报,2006,33(3):675-679.
[7]Agerbirk M,de Vos M,Kim J H,et al. Indole glucosinolate breakdown and its biological effects[J]. Phytochemistry Review,2009,8:101-120.
[8]Malik M S,Norsworthy J K,Culpepper A S,et al. Use of wild radish(Raphanus raphanistrum)and rye cover crops for weed suppression in sweet corn[J]. Weed Science,2008,56(4):588-595.
[9]Wang Y,Pan Y,Liu Z,et al. De novo transcriptome sequencing of radish (Raphanus sativus L.) and analysis of major genes involved in glucosinolate metabolism[J]. BMC Genomics,2013,14:836.
[10]Xu W,Yan S C. The function of jasmonic acid in induced plantdefence[J]. Acta Ecologica Sinica,2005,25:2074-2082.
[11]Angeloni C,Leoncini E,Malaguti M,et al. Modulation of phase Ⅱ enzymes by sulforaphane:implications for its cardioprotective potential[J]. Journal of Agricultural and Food Chemistry,2009,57(12):5615-5622.
[12]Brader G,Mikkelsen M D,Halkier B A,et al. Altering glucosinolate profiles modulates disease resistance in plants[J]. The Plant Journal:for Cell and Molecular Biology,2006,46(5):758-767.
[13]Talalay P,Fahey J W. Phytochemicals from cruciferous plants protectagainst cancerbymodulating carcinogenmetabolism[J]. J Nutr,2001,131:3027-3033.
[14]Gigolashvili T,Yatusevich R,Rollwitz I,et al. The plastidic bile acid transporter 5 is required for the biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana[J]. The Plant Cell,2009,21(6):1813-1829.
[15]李娟,朱祝军. 植物中硫代葡萄糖苷生物代谢的分子机制[J].细胞生物学杂志,2005,27(5):519-524.
[16]Hirai M Y,Sugiyama K,Sawada Y,et al. Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104:6478-6483.
[17]Diebold R,Schuster J,D?schner K,et al. The branched-chain amino acid transaminase gene family in Arabidopsis encodes plastid and mitochondrial proteins[J]. Plant Physiology,2002,129(2):540-550.
[18]Schuster J,Knill T,Reichelt M,et al. Branched-chain aminotransferase4 is part of the chain elongation pathway in the biosynthesis of methionine-derived glucosinolates in Arabidopsis[J]. Plant Cell,2006,18(10):2664-2679.
[19]Korolevao A,Davies A,Deeken R,et al. Identification of a new glucosinolate rich cell type in Arabidopsis flower stalk[J]. Plant Physiology,2000,124(2):599-608.
[20]Kroymann J,Textor S,Tokuhisa J G,et al. A gene controlling variation in Arabidopsis glucosinolate composition is part of the methionine chain elongation pathway[J]. Plant Physiology,2001,127(3):1077-1088.
[21]Textor S,de Kraker J W,Hause B,et al. MAM3 catalyzes the formation of all aliphatic glucosinolate chain lengths in Arabidopsis[J]. Plant Physiology,2007,144(1):60-71.
[22]Chen Y Z,Yan X F,Chen S X. Bioinformatic analysis of molecular network of glucosinolate biosynthesis[J]. Computational Biology and Chemistry,2011,35(1):10-18.
[23]Zou Z W,Ishida M,Li F,et al. QTL analysis using SNP markers developed by next-generation sequencing for identification of candidate genes controlling 4-methylthio-3-butenyl glucosinolate contents in Roots of radish,Raphanus sativus L.[J]. PLoS One,2013,8(1):e53541.
[24]潘艳. 萝卜硫苷合成代谢关键基因克隆与表达特征分析[D].南京:南京农业大学,2013.
[25]钟海秀,陈亚州,阎秀峰. 植物芥子油苷代谢及其转移[J].生物技术通报,2007(3):44-48.
[26]Hull A K,Vij R,Celenza J L. Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America,2000,97(5):2379-2384.
[27]Zang Y X,Kim J H,Park Y D,et al. Metabolic engineering of aliphatic glucosinolates in Chinese cabbage plants expressing Arabidopsis MAM1,CYP79F1,and CYP83A1[J]. BMB Reports,2008,41(6):472-478.
[28]汪俏梅,曹家树. 芥子油苷研究进展及其在蔬菜育种上的应用前景[J].园艺学报,2001,28(增刊1):669-675.
[29]Bednarek P,Pifilewska-Bednarek M,Alefisvato-Schneider B,et al. A glucosinolate metabolism pathway in living plant cells mediates Broad-Spectrum antifungal defense[J]. Science,2009,323:101-106.
[30]Kliebenstein D J,Lambrix V M,Reichelt M,et al. Gene duplication in the diversification of secondary metabolism:tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis[J]. Plant Cell,2001,13(3):681-693.
[31]王辉,郭军,梅燚,等. 萝卜硫苷生物合成相关基因RsFMOGS-OXs的预测及分析[J].江西农业学报,2014,26(1):25-27,31.
[32]Gigolashvili T,Yatusevich R,Berger B,et al. The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana[J]. The Plant Journal,2007,51(2):247-261.
[33]Schweizer F,Fernández-Calvo P,Zander M,et al. Arabidopsis basic helix-loop-helix transcription factors MYC2,MYC3,and MYC4 regulate glucosinolate biosynthesis,insect performance,and feeding behavior[J]. The Plant Cell,2013,25(8):3117-3132.

相似文献/References:

[1]钱善勤,陈刚,朱梅,等.京尼平苷对萝卜光合反应及生物量的影响[J].江苏农业科学,2016,44(03):171.
 Qian Shanqin,et al.Effects of geniposide on photosynthesis and biomass of radish[J].Jiangsu Agricultural Sciences,2016,44(06):171.
[2]李媛媛,王冰林,韩佳,等.萝卜下胚轴高效再生体系的建立[J].江苏农业科学,2014,42(01):58.
 Li Yuanyuan,et al.Establishment of high-efficient regeneration system of radish hypocotyls[J].Jiangsu Agricultural Sciences,2014,42(06):58.
[3]盛彦敏,赵晶华,赵婷.光照度对3个萝卜品种种子萌发的影响[J].江苏农业科学,2015,43(09):213.
 Sheng Yanmin,et al.Effects of light intensity on seed germination of three Raphanus sativus cultivars[J].Jiangsu Agricultural Sciences,2015,43(06):213.
[4]胡伟,陈豫,伍洋.不同激素浓度配比对萝卜愈伤组织形成的影响[J].江苏农业科学,2014,42(07):60.
 Hu Wei,et al.Effect of different hormone concentrations on callus induction of radish[J].Jiangsu Agricultural Sciences,2014,42(06):60.
[5]刘哲,许园园,苏小俊.萝卜抽薹相关SRAP分子标记筛选与分析[J].江苏农业科学,2016,44(08):74.
 Liu Zhe,et al.Screening and analysis of radish bolting related SRAP molecular markers[J].Jiangsu Agricultural Sciences,2016,44(06):74.
[6]赵英男,李博文,马理,等.大棚萝卜菜田土壤理化性质及相关酶活性特征[J].江苏农业科学,2016,44(09):486.
 Zhao Yingnan,et al.Analysis of soil physico-chemical properties and related soil enzymes activities in greenhouse radish and vegetable plantation[J].Jiangsu Agricultural Sciences,2016,44(06):486.
[7]娄丽娜,戴澈,刘根新,等.萝卜花序轴再生体系的建立[J].江苏农业科学,2017,45(21):42.
 Lou Lina,et al.Establishment of rachis regeneration system of radish[J].Jiangsu Agricultural Sciences,2017,45(06):42.
[8]李春龙.汞胁迫对萝卜种子萌发、幼苗根际土壤酶活性及土壤微生物的影响[J].江苏农业科学,2018,46(07):142.
 Li Chunlong.Impacts of Hg2+ stress on seed germination,seedling rhizosphere soil enzyme activity and soil microbe of radish[J].Jiangsu Agricultural Sciences,2018,46(06):142.
[9]张丽娜,塔秀成,黄伟,等.微生物菌肥对萝卜土壤微生物及酶活性的影响[J].江苏农业科学,2018,46(15):93.
 Zhang Lina,et al.Effects of microbial fertilizers on microorganism and enzymatic activity in radish soil[J].Jiangsu Agricultural Sciences,2018,46(06):93.
[10]陈雪,沈方科,张增裕,等.镉砷低积累萝卜品种的筛选[J].江苏农业科学,2018,46(19):152.
 Chen Xue,et al.Screening of radish cultivars with cadmium and arsenic low accumulation[J].Jiangsu Agricultural Sciences,2018,46(06):152.

备注/Memo

备注/Memo:
收稿日期:2015-02-20
基金项目:“十二五”农村领域国家科技计划(编号:2012BAD02B01);江苏省科技支撑计划(编号:BE2013429);江苏省农业科技自主创新资金[编号:CX(12)5043]。
作者简介:刘哲,男,硕士,主要从事十字花科和瓜类蔬菜遗传育种研究。
通信作者:苏小俊,研究员。E-mail:xiaojunsu@yahoo.com。
更新日期/Last Update: 2015-06-25