|本期目录/Table of Contents|

[1]董金龙,李汛,段增强,等.CO2施肥对设施黄瓜生长和土壤氮素转化的影响[J].江苏农业科学,2016,44(02):195-200.
 Dong Jinlong,et al.Effects of CO2 fertilization on growth of cucumber(Cucumis sativus L.) and soil nitrogen transformation in greenhouse[J].Jiangsu Agricultural Sciences,2016,44(02):195-200.
点击复制

CO2施肥对设施黄瓜生长和土壤氮素转化的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第44卷
期数:
2016年02期
页码:
195-200
栏目:
园艺与林学
出版日期:
2016-02-25

文章信息/Info

Title:
Effects of CO2 fertilization on growth of cucumber(Cucumis sativus L.) and soil nitrogen transformation in greenhouse
作者:
董金龙12 李汛1 段增强1 薛鹤12
1.中国科学院南京土壤研究所土壤与农业可持续发展国家重点实验室,江苏南京 210008; 2.中国科学院大学,北京 100049
Author(s):
Dong Jinlonget al
关键词:
CO2施肥产量土壤微生物生物量氨氧化氮素形态
Keywords:
-
分类号:
S642.206
DOI:
-
文献标志码:
A
摘要:
在开顶式生长箱(OTCs)内,以津美3号和津绿婉美2个黄瓜品种为材料,研究添加不同氮条件下CO2施肥对黄瓜干物质积累、土壤微生物生物量的影响。结果发现:(1)与对照大气CO2浓度相比,CO2施肥显著提高了黄瓜产量,其中施氮时的津美3号产量提高27.0%,不施氮时津绿婉美产量提高123.2%;CO2施肥更能促进根系生长量小的津绿婉美根系的生长;CO2施肥与不施氮更能促进津绿婉美黄瓜茎叶中干物质向果实的分配。(2)CO2施肥显著提高土壤微生物生物量氮含量,但对土壤微生物生物量碳及土壤有机碳的影响并不显著;CO2施肥同时提高施氮时土壤铵态氮含量,降低硝态氮含量;CO2施肥下较高的土壤铵态氮含量与黄瓜产量有显著正相关,正常CO2供应时土壤铵态氮含量与黄瓜产量无显著相关性。以上结果表明,CO2施肥对不同设施黄瓜品种生长发育的影响差异很大,同时土壤中氮含量对CO2施肥效果有较大的影响。
Abstract:
-

参考文献/References:

[1]喻景权. “十一五” 我国设施蔬菜生产和科技进展及其展望[J]. 中国蔬菜,2011,(2):11-23.
[2]汪永钦,刘荣花,王良启. 日光温室蔬菜栽培中人工增施CO2技术[J]. 应用气象学报,1997,8(4):76-84.
[3]Klring H P,Hauschild C,Heiner A,et al. Model-based control of CO2 concentration in greenhouses at ambient levels increases cucumber yield[J]. Agricultural and Forest Meteorology,2007,143(3/4):208-216.
[4]Mortensen L M. Review:CO2 enrichment in greenhouses:crop responses[J].Scientia Horticulturae,1987,33(1/2):1-25.
[5]Nederhoff E M. Effects of CO2 concentration on photosynthesis,transpiration and production of greenhouse fruit vegetable crops[D]. Wageningen:Agricultural University,1994:1-11.
[6]Jin C W,Du S T,Wang Y E,et al. Carbon dioxide enrichment by composting in greenhouses and its effect on vegetable production[J]. Journal of Plant Nutrition and Soil Science,2009,172(3):418-424.
[7]Leakey A D,Ainsworth E A,Bernacchi C J,et al. Elevated CO2 effects on plant carbon,nitrogen,and water relations:six important lessons from FACE[J]. Journal of Experimental Botany,2009,60(10):2859-2876.
[8]Krner C. Plant CO2 responses:an issue of definition,time and resource supply[J]. New Phytologist,2006,172(3):393-411.
[9]Wand S J,Midgley G,Jones M H,et al. Responses of wild C4 and C3 grass(Poaceae) species to elevated atmospheric CO2 concentration:a meta‐analytic test of current theories and perceptions[J]. Global Change Biology,1999,5(6):723-741.
[10]Long S P,Ainsworth E A,Rogers A,et al. Rising atmospheric carbon dioxide:plants FACE the future[J]. Annual Review of Plant Biology,2004,55:591-628.
[11]Yelle S,Beeson R C,Trudel M J,et al. Duration of CO2 enrichment influences growth,yield,and gas exchange of two tomato species[J]. Journal of the American Society for Horticultural Science,1990,115(1):52-57.
[12]Cotrufo M F,Ineson P,Scott A Y. Elevated CO2 reduces the nitrogen concentration of plant tissues [J]. Global Change Biology,1998,4(1):43-54.
[13]Stitt M,Krapp A. The interaction between elevated carbon dioxide and nitrogen nutrition:the physiological and molecular background[J]. Plant Cell & Environment,1999,22(6):583-621.
[14]Kirschbaum M U. Does enhanced photosynthesis enhance growth? Lessons learned from CO2 enrichment studies[J]. Plant Physiology,2011,155(1):117-124.
[15]Reich P B,Hobbie S E,Lee Tali,et al. Nitrogen limitation constrains sustainability of ecosystem response to CO2[J]. Nature,2006,440(786):922-925.
[16]Min J,Shi Wei M,Xing G X,et al. Effects of a catch crop and reduced nitrogen fertilization on nitrogen leaching in greenhouse vegetable production systems[J]. Nutrient Cycling in Agroecosystems,2011,91(1):31-39.
[17]Chen Y L,Xu Z W,Hu H W,et al. Responses of ammonia-oxidizing bacteria and archaea to nitrogen fertilization and precipitation increment in a typical temperate steppe in Inner Mongolia[J]. Applied Soil Ecology,2013,68:36-45.
[18]Norton J M,Stark J M. Regulation and measurement of nitrification in terrestrial systems[J]. Methods in Enzymology,2011,486:343-368.
[19]Horz H P,Barbrook A,Field C B,et al. Ammonia-oxidizing bacteria respond to multifactorial global change[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(42):15136-15141.
[20]Zhang Y,Chen X,Zhang C,et al. Availability of soil nitrogen and phosphorus under elevatedand temperature in the Taihu Lake Region,China[J]. Journal of Plant Nutrition and soil Science,2014,177(3):343-348.
[21]Bloom A J,Burger M,Rubio Asensio J S,et al. Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis[J]. Science,2010,328(5980):899-903.
[22]Bloom A J,Smart D R,Nguyen D T,et al. Nitrogen assimilation and growth of wheat under elevated carbon dioxide[J]. Proceedings of the National Academy of Sciences of the United States of America,2002,99(3):1730-1735.
[23]Cruz J L,Alves A C,Lecain D R,et al. Effect of elevated CO2 concentration and nitrate:ammonium ratios on gas exchange and growth of cassava(Manihot esculenta Crantz)[J]. Plant and Soil,2014,374(1/2):33-43.
[24]Carlisle E,Myers S,Raboy V,et al. The effects of inorganic nitrogen form and CO2 concentration on wheat yield and nutrient accumulation and distribution[J]. Frontiers in Plant Science,2012,3:1-13.
[25]鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科学技术出版社,2000:231-233.
[26]韩毅科,杜胜利,魏爱民,等. 利用未受精子房培养技术育成黄瓜新品种“津美3号”[J]. 园艺学报,2010,37(3):509-510.
[27]Watkins C B,Manzano-mendez J E,Nock J F,et al. Cultivar variation in response of strawberry fruit to high carbon dioxide treatments[J]. Journal of the Science of Food and Agriculture,1999,79(6):886-890.
[28]Ziska L H. Morris C F and goins E W. Quantitative and qualitative evaluation of selected wheat varieties released since 1903 to increasing atmospheric carbon dioxide:can yield sensitivity to carbon dioxide be a factor in wheat performance?[J]. Global Change Biology,2004,10(10):1810-1819.
[29]Jackson R B,Cook C W,Pippen J S,et al. Increased belowground biomass and soil CO2 fluxes after a decade of carbon dioxide enrichment in a warm-temperate forest[J]. Ecology,2009,90(12):3352-3366.
[30]Rogers H H,Prior S A,Runion G B,et al. Root to shoot ratio of crops as influenced by CO2[J]. Plant and Soil,1995,187(2):229-248.
[31]Marschner P. Marschner’s mineral nutrition of higher plants[M]. 3rd ed. London:Academic Press,2012:135-151.
[32]Hoosbeek M R,Li Y,Scarascia-Mugnozza G E. Free atmospheric CO2 enrichment(FACE) increased labile and total carbon in the mineral soil of a short rotation poplar plantation[J]. Plant and Soil,2006,281(1/2):247-254.
[33]Freeman C,Fenner N,Ostle N J,et al. Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels[J]. Nature,2004,430(6996):195-198.
[34]Kuzyakov Y. Priming effects:Interactions between living and dead organic matter[J]. Soil Biology & Biochemistry,2010,42(9):1363-1371.
[35]Fontaine S,Mariotti A,Abbadie L. The priming effect of organic matter:a question of microbial competition?[J]. Soil Biology & Biochemistry,2003,35(6):837-843.
[36]Zobel R W,Wright S F. Roots and soil management:interactions between roots and the soil[M]//Cheng W,Kuzyakov Y. Root effects on soil organic matter decomposition. Madison,Wisconsin,USA:American Society of Agronomy,Crop Science Society of America,Soil Science Society of America,2005:119-143.
[37]Hu S,Chapin F S,Firestone M K,et al. Nitrogen limitation of microbial decomposition in a grassland under elevated CO2[J]. Nature,2001,409(6817):188-191.
[38]Walker T S,Bais H P,Grotewold E,et al. Root exudation and rhizosphere biology[J]. Plant Physiology,2003,132(1):44-51.
[39]Lesaulnier C,Papamichail D,McCorkle S,et al. Elevated atmospheric CO2 affects soil microbial diversity associated with trembling Aspen[J]. Environmental Microbiology,2008,10(4):926-941.
[40]Kuzyakov Y. Review:factors affecting rhizosphere priming effects[J]. Journal of Plant Nutrition and Soil Science,2002,165(4):382-396.
[41]孙凤霞,张伟华,徐明岗,等. 长期施肥对红壤微生物生物量碳氮和微生物碳源利用的影响[J]. 应用生态学报,2010,21(11):2792-2798.

相似文献/References:

[1]崔月峰,孙国才,王桂艳,等.不同施氮水平和前氮后移措施对水稻产量 及氮素利用率的影响[J].江苏农业科学,2013,41(04):66.
[2]吴丽军,孙小凤,张荣,等.硒对不同品种春油菜含硒量、生物量及产量的影响[J].江苏农业科学,2013,41(04):80.
[3]国鸿蔷,谢艳红.膜下滴灌条件下不同水肥设计对烟草生长和产量的影响[J].江苏农业科学,2013,41(04):96.
[4]王朝海,陈春艳,顾尚敬,等.不同覆土高度对马铃薯产量及其构成的影响[J].江苏农业科学,2013,41(04):101.
[5]刘荣,张卫建,齐华,等.密植型玉米“中单909”高产群体结构特征[J].江苏农业科学,2013,41(05):56.
 Liu Rong,et al.Study on high yield population structure of close planting maize cultivar “Zhongdan 909”[J].Jiangsu Agricultural Sciences,2013,41(02):56.
[6]王麒,张小明,卞景阳,等.不同插秧密度对黑龙江省第二积温带水稻产量及产量构成的影响[J].江苏农业科学,2013,41(05):60.
 Wang Qi,et al.Effect of different transplanting density on yield and yield component of rice in second temperature zone of Heilongjiang Province[J].Jiangsu Agricultural Sciences,2013,41(02):60.
[7]朱志武,刘雪基,陈震,等.烯效唑对油菜植株及产量性状的影响[J].江苏农业科学,2013,41(05):77.
 Zhu Zhiwu,et al.Effect of uniconazole on growth and yield traits of rapeseed[J].Jiangsu Agricultural Sciences,2013,41(02):77.
[8]耿德刚,徐俊伟,戈振超,等.温室大棚番茄滴灌试验研究及效益分析[J].江苏农业科学,2013,41(05):132.
 Geng Degang,et al.Drip irrigation experimental and benefit analysis on greenhouse tomato[J].Jiangsu Agricultural Sciences,2013,41(02):132.
[9]杜中平,聂书明.不同配方基质对番茄生长特性、光合特性及产量的影响[J].江苏农业科学,2013,41(05):138.
 Du Zhongping,et al.Effects of different substrates on growth,photosynthetic characteristics and yield of tomato[J].Jiangsu Agricultural Sciences,2013,41(02):138.
[10]梁悦萍,唐道城.不同栽培基质对郁金香器官发育及鳞茎生长的影响[J].江苏农业科学,2013,41(05):151.
 Liang Yueping,et al.Effect of different cultivation substrates on organ development and bulblet growth of tulip[J].Jiangsu Agricultural Sciences,2013,41(02):151.
[11]高文瑞,李德翠,徐刚,等.CO2施肥对大白菜生长及光合的影响[J].江苏农业科学,2016,44(09):228.
 Gao Wenrui,et al.Effects of CO2 enrichment on growth and photosynthesis of Chinese cabbage[J].Jiangsu Agricultural Sciences,2016,44(02):228.

备注/Memo

备注/Memo:
收稿日期:2015-03-20
基金项目:国家自然科学基金(编号:41101272);国家科技支撑计划 (编号:2014BAD14B04)。
作者简介:董金龙(1988—),男,安徽蚌埠人,博士研究生,主要从事植物营养生理与土壤生态研究。E-mail:jldong@issas.ac.cn。
通信作者:段增强(1963—),男,安徽和县人,硕士,研究员,主要从事设施农业和循环农业研究。E-mail:zqduan@issas.ac.cn。
更新日期/Last Update: 2016-02-25