|本期目录/Table of Contents|

[1]杨桂英.蕨类植物修复重金属污染的应用研究进展[J].江苏农业科学,2016,44(05):10-14.
 Yang Guiying.Research progress of pteridophyta applied in phytoremediation of heavy metal contaminated environments[J].Jiangsu Agricultural Sciences,2016,44(05):10-14.
点击复制

蕨类植物修复重金属污染的应用研究进展 (PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第44卷
期数:
2016年05期
页码:
10-14
栏目:
专论
出版日期:
2016-05-25

文章信息/Info

Title:
Research progress of pteridophyta applied in phytoremediation of heavy metal contaminated environments
作者:
杨桂英12
1.西南林业大学环境科学与工程学院,云南昆明 650224; 2.云南玉溪森林生态系统国家定位观测研究站,云南玉溪 653100
Author(s):
Yang Guiying
关键词:
蕨类植物重金属污染砷超富集植物植物修复
Keywords:
-
分类号:
X171.4
DOI:
-
文献标志码:
A
摘要:
蕨类植物是一类较为低等的维管束植物,系统演化上介于苔藓植物与种子植物之间,是陆生生态系统中重要的成员。该类植物具有适应力强、耐贫瘠等独特的生态学特征,且因某些种类对砷、锑的超量吸收和积累而广受关注。此外,蕨类植物对镉、铅、铜、镍等重金属及稀土元素的吸收也有不俗表现。本文从蕨类植物对重金属污染治理的应用、修复机制及优势进行了阐述,并展望了未来蕨类植物生态修复研究的前景及可能发展的研究领域。
Abstract:
-

参考文献/References:

[1]李星学,周志炎,郭双兴. 植物界的发展和演化[M]. 北京:科学出版社,1981:50-51.
[2]陆树刚. 中国蕨类植物区系[M]//吴征镒,陈心启.中国植物志(第一卷).北京:科学出版社,2004:78-94.
[3]陆树刚,陈风. 论蕨类植物生态类型的划分问题[J]. 云南大学学报:自然科学版,2013,35(3):407-415.
[4]吴兆洪,秦仁昌. 中国蕨类科属志[M]. 北京:科学出版社,1991:4.
[5]Proctor M C F. Light and desiccation responses of some Hymenophyllaceae (filmy ferns) from Trinidad,Venezuela and New Zealand:poikilohydry in a light-limited but low evaporation ecological niche[J]. Annals of Botany,2012,109(5):1019-1026.
[6]Johnson G N,Rumsey F J,Headley A D,et al. Adaptations to extreme low light in the fern Trichomanes speciosum[J]. New Phytologist,2000,148(3):423-431.
[7]Page C N. Ecological strategies in fern evolution:a neopteridological overview[J]. Review of Palaeobotany and Palynology,2002,119(1):1-33.
[8]李影,陈明林. 节节草生长对铜尾矿砂重金属形态转化和土壤酶活性的影响[J]. 生态学报,2010,30(21):5949-5957.
[9]Oliver M J,Tuba Z,Mishler B D. The evolution of vegetative desiccation tolerance in land plants[J]. Plant Ecology,2000,151(1):85-100.
[10]Gupta M,Devi S. Uptake and toxicity of cadmium in aquatic ferns[J]. J Environ Biology,1995,16(2):131-136.
[11]Chang J S,Yoon I H,Kim K W. Heavy metal and arsenic accumulating fern species as potential ecological indicators in As contaminated abandoned mines[J]. Ecol Indic,2009,9(6):1275-1279.
[12]Kamila K,Aleksandra S C,Krzysztof K,et al. Chromium and nickel in Pteridium aquilinum from environments with various levels of these metals[J]. Environ Sci Pollut Res,2015,22(1):527-534.
[13]严岳鸿,张宪春,马克平. 中国蕨类植物多样性与地理分布[M]. 北京:科学出版社,2013:17-26.
[14]Prasad M N V,Freitas H,Fraenzle S,et al. Knowledge explosion in phytotechnologies for environmental solutions[J]. Environ Pollut,2010,158(1):18-23.
[15]Sebastian A,Prasad M N V. Cadmium minimization in rice:a review[J]. Agron Sustain,2014,34:155-173.
[16]Kramer U,Cotter-Howells J D,Charnock J M,et al. Free histidine as a metal chelator in plants that accumulate nickel[J]. Nature,1996,379(6566):634-738.
[17]Nriagu J O. Arsenic in the environment. Part Ⅱ:Human health and ecosystem effects[M]. New York:John Wiley&Sons,1994:1-5.
[18]陈怀满. 土壤中化学物质的行为与环境质量[M]. 北京:科学出版社,2002:79.
[19]Kabata-Pendias A,Pendias H. Trace elements in soils and plants[M]. 3nd ed. Boca Raton,USA:CRC Press,2001:3-20.
[20]Ma L Q,Komar K M,Tu C,et al. A fern that hyperaccumulates arsenic:a hardy,versatile,fast-growing plant helps to remove arsenic from contaminated soils[J]. Nature,2001,409(6820):579.
[21]陈同斌,韦朝阳,黄泽春,等. 砷超富集植物蜈蚣草及其对砷的富集特征[J]. 科学通报,2002,47 (3):207-210.
[22]Chen T B,Wei C Y,Huang Z C,et al. Arsenic hyperaccumulator Pteris vittata L. and its arsenic accumulation[J]. Chinese Science Bulletin,2002,47(11):902-905.
[23]韦朝阳,陈同斌,黄泽春,等. 大叶井口边草——一种新发现的富集砷的植物[J]. 生态学报,2002,22(5):777-778.
[24]陈同斌,黄泽春,黄宇营,等. 砷超富集植物中元素的微区分布及其与砷富集的关系[J]. 科学通报,2003,45(11):1163-1168.
[25]陈同斌,阎秀兰,廖晓勇,等. 蜈蚣草中砷的亚细胞分布与区隔化作用[J]. 科学通报,2005,50(24):2739-2744.
[26]Wang H B,Wong M H,Lan C Y,et al. Uptake and accumulation of arsenic by 11 Pteris taxa from southern China[J]. Environmental Pollution,2007,145(1):225-233.
[27]Srivastava M,Ma L Q,Santos J A G. Three new arsenic hyperaccumulating ferns[J]. Science of the Total Environment,2006,364(1):24-31.
[28]Zhao F J,Dunham S J,McGrath S P. Arsenic hyperaccumulation by different fern species[J]. New Phytologist,2002,156 (1):27-31.
[29]Meharg A A. Variation in arsenic accumulation-hyperaccumulation in ferns and their allies[J]. New Phytologist,2003,157(1):25-31.
[30]Koller C E,Patrick J W,Rose R J,et al. Pteris umbrosa R. Br. as an arsenic hyperaccumulator:accumulation,partitioning and comparison with the established As hyperaccumulator Pteris vittata[J]. Chemosphere,2007,66 (7):1256-1263.
[31]Visoottiviseth P,Francesconi K,Sridokchan W .The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land[J]. Environmental Pollution,2002,118(3):453-461.
[32]徐卫红,Singh B,Kachenko A G. 砷超积累植物粉叶蕨及其对砷的吸收富集研究[J]. 水土保持学报,2009,23(2):173-177.
[33]He M,Wang X,Wu F,et al. Antimony pollution in China[J]. Sci Total Environ,2012,421/422:41-50.
[34]冯人伟,韦朝阳,涂书新. 植物对锑的吸收和代谢及其毒性的研究进展[J]. 植物学报,2012,47(3):302-308.
[35]Tisarum R,Lessl J T,Dong X,et al. Antimony uptake,efflux and speciation in arsenic hyperaccumulator Pteris vittata[J]. Environmental Pollution,2014,186:110-114.
[36]Feng R W,Wei C Y,Tu S X,et al. Simultaneous hyperaccumulation of arsenic and antimony in Cretan brake fern:evidence of plant uptake and subcellular distributions[J]. Microchem J,2011,97(1):38-43.
[37]Feng R,Wang X,Wei C,et al. The accumulation and subcellular distribution of arsenic and antimony in four fern plants[J]. International Journal of Phytoremediation,2015,17(4):348-354.
[38]Feng R W,Wei C Y,Tu S X,et al. The uptake and detoxification of antimony by plants:a review[J]. Environ Exp Bot,2013,96:28-34.
[39]Baroni F,Boscagli A,Protano G,et al. Antimony accumulation in Achillea ageratum,Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area[J]. Environmental Pollution,2000,109(2):347-352.
[40]Affholder M C,Prudent P,Masotti V,et al. Transfer of metals and metalloids from soil to shoots in wild rosemary (Rosmarinus officinalis L.) growing on a former lead smelter site:human exposure risk[J]. Sci Total Environ,2013,454:219-229.
[41]Koller C E,Patrick J W,Rose R J,et al. Arsenic and heavy metal accumulation by Pteris vittata L. and P. umbrosa R. Br[J]. Bulletin of Environmental Contamination and Toxicology,2008,80(2):128-133.
[42]Roccotiello E,Manfredi A,Drava G,et al. Zinc tolerance and accumulation in the ferns Polypodium cambricum L. and Pteris vittata L.[J]. Ecotoxicology and Environmental Safety,2010,73(6):1264-1271.
[43]李影,褚磊. 节节草对Cu 的吸收和积累特性[J]. 生态学报,2008,28(4):1565-1572.
[44]李影,王友保. 4种蕨类草本植物对Cu的吸收和耐性研究[J]. 草业学报,2010,19(3):191-197.
[45]Dhir B,Sharmila P,Pardha Saradhi P,et al. Physiological and antioxidant responses of Salvinia natans exposed to chromium-rich wastewater[J]. Ecotoxicology and Environmental Safety,2009,72(6):1790-1797.
[46]徐勤松,计汪栋,杨海燕,等. 镉在槐叶苹叶片中的蓄积及其生态毒理学分析[J]. 生态学报,2009,29(6):3019-3027.
[47]何志坚,薛鸿. 蜈蚣草野外复合污染条件下镉等重金属富集量的测定[J]. 绵阳师范学院学报,2011,30(11):130-134.
[48]李凡庆,毛振伟,等. 铁芒萁植物体中稀土元素含量分布的研究[J]. 稀土,1992,13(5):16-19.
[49]苗莉,徐瑞松,马跃良,等. 河台金矿矿山土壤-植物稀土元素含量分布和迁移积聚特征[J]. 生态环境,2008,17(1):350-356.
[50]Tu C,Ma L Q. Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake[J]. Journal of Environmental Quality,2002,31(2):641-647.
[51]Nishizono H,Minemura H,Suzuki S. An inducible copper-thiolate in the fern,Athyrium yokoscense:involvement in copper tolerance of the fern[J]. Plant Cell Physiol,1988,29(8):1345-1351.
[52]Webb S M,Gaillard J F,Ma L Q,et al . XAS speciation of arsenic in a hyperaccumulating fern[J]. Environ Sci Techn,2003,37(4):754-760.
[53]冯人伟. 植物对砷、硒、锑的富集及抗性机理研究[D]. 武汉:华中农业大学,2009.
[54]Zhang K M,Deng T,Fang Y M,et al. Influence of co-contamination of As and Pb on the frond physiology and ultrastructure of Pteris vittata L.[J]. Fresenius Environmental Bulletin,2011,21(8):2215-2223.
[55]Jeong S,Moon H S,Nam K. Enhanced uptake and translocation of arsenic in Cretan brake fern (Pteris cretica L.) through siderophorearsenic complex formation with an aid of rhizospheric bacterial activity[J]. Journal of Hazardous Materials,2014,280:536-543.
[56]赵根成,廖晓勇,阎秀兰,等. 微生物强化蜈蚣草累积土壤砷能力的研究[J]. 环境科学,2010,31(2):431-436.
[57]Liu Y,Zhu Y G,Chen B D,et al. Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fem Pteris vittata L.[J]. Mycorrhiza,2005,15(3):187-192.
[58]胡理乐,刘琪,闫伯前,等. 生态恢复后的千烟洲植物群落种类组成及结构特征[J]. 林业科学研究,2006,19(6):807-812.
[59]高雷,刘宏茂.西双版纳热带雨林下砂仁拔除后的生态恢复研究[J]. 植物生态学报,2003,27 (3):366-372.
[60]Sundaram S,Wu S,Ma L Q,et al. Expression of a Pteris vittata glutaredoxin PvGRX5 in transgenic Arabidopsis thaliana increases plant arsenic tolerance and decreases arsenic accumulation in the leaves[J]. Plant,Cell and Environment,2009,32(7):851-858.
[61]何振艳,麻密,徐文忠,等. 一种植物砷抗性相关的蛋白及编码基因及其应用:中国,ZL201010116397.2[P]. 2013-05-01.
[62]Kumar S,Dubey R S,Tripathi R D,et al. Omics and biotechnology of arsenic stress and detoxification in plants:current updates and prospective[J]. Environment International,2015,74(6):221-230.
[63]Indriolo E,Na G N,Ellis D,et al. A Vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants[J]. The Plant Cell,2010,22(6):2045-2057.
[64]郑洁敏,唐世荣,陈子元,等. 蕨类植物对无机污染物的吸收[J]. 核农学报,2005,19(2):155-159.
[65]郎业广,赵慧琴,刘忠阳,等. 红萍净化污水的研究[C]. 福州:国际红萍利用学术讨论会,1985.
[66]齐恩山,刘期松,杨桂芬,等. 凤眼莲等水生植物对灌溉重金属污水净化作用的初步研究[J]. 生态学杂志,1984,9(1):14-18.
[67]任安芝,唐廷贵. 细绿萍对铅、汞污水的净化作用及其生物学效应[J]. 南开大学学报:自然科学版,1996,29(1):74-79.
[68]Forni C,Chen J,Tancioni L,et al. Evaluation of the fern azolla for growth,nitrogen and phosphorus removal from wastewater[J]. Water Res,2001,35(6):1592-1598.
[69]易厚燕,吴爱平,王华. 满江红在不同氮浓度中对氮、磷的吸收效果[J]. 山地农业生物学报,2013,32(2):138-142.
[70]熊集兵,常会庆,何振立,等. 低温条件下满江红对地表水氮磷的去除效应研究[J]. 水土保持学报,2007,21(6):96-99.
[71]胡南,丁德馨,李广悦,等. 五种水生植物对水中铀的去除作用[J]. 环境科学学报,2012,32(7):1637-1645.
[72]Nesterenko-Malkovskaya A,Kirzhner F,Zimmels Y,et al. Eichhornia crassipes capability to remove naphthalene from wastewater in the absence of bacteria[J]. Chemosphere,2012,87 (10):1186-1191.
[73]李日新. 几种蕨类植物无性繁殖技术研究[J]. 国土与自然资源研究,2011(2):55-56.
[74]黄碧光,陈庆山,林文雄.水蕨的农田生境调查和人工繁育探索[J]. 中国生态农业学报,2012,20(6):810-812.
[75]李和平,刘兴剑,陈艳,等. 土生蕨类植物引种栽培技术[J]. 江苏农业科学,2014,42(11):213-214.
[76]沈羽,张开梅,方炎明. 蕨类植物修复土壤与净化水体的研究进展[J]. 江苏农业科学,2014,42(1):11-14.
[77]Mathews S,Ma L Q,Bala R,et al. Arsenic reduced scale-insect infestation on arsenic hyperaccumulator Pteris vittata L.[J]. Environmental and Experimental Botany,2009,65(2/3):282-286.
[78]Jeong S,Moon H S,Nam K. Increased ecological risk due to the hyperaccumulation of As in Pteris cretica during the phytoremediation of an As-contaminated site[J]. Chemosphere,2015,122:1-7.

相似文献/References:

[1]史景允,于伟红,梁秋生.蓖麻对镉污染土壤的修复潜力[J].江苏农业科学,2014,42(11):386.
 Shi Jingyun,et al(8).Potential repairing of cadmium contaminated soil by castor oil plant[J].Jiangsu Agricultural Sciences,2014,42(05):386.
[2]丁晓浩,何云核.10种观赏蕨类植物的耐阴性[J].江苏农业科学,2013,41(06):148.
 Ding Xiaohao,et al.Shade tolerance of ten species of ornamental ferns[J].Jiangsu Agricultural Sciences,2013,41(05):148.
[3]沈羽,张开梅,方炎明.蕨类植物修复土壤与净化水体的研究进展[J].江苏农业科学,2014,42(01):11.
 Shen Yu,et al.Research progress of application of ferns in restoration of soil and purification of water[J].Jiangsu Agricultural Sciences,2014,42(05):11.
[4]黄凯,张杏锋,李丹.改良剂修复重金属污染土壤的研究进展[J].江苏农业科学,2014,42(01):292.
 Huang Kai,et al.Research progress of remediation of heavy metals contaminated soil using soil improvers[J].Jiangsu Agricultural Sciences,2014,42(05):292.
[5]潘琼,潘峰.湖南省冶矿城市土壤重金属污染现状及评估[J].江苏农业科学,2015,43(10):405.
 Pan Qiong,et al.Status and evaluation of heavy metals pollution in soils around main mining cities in Hunan Province[J].Jiangsu Agricultural Sciences,2015,43(05):405.
[6]刘亚萍,赵艳玲,侯东文,等.基于CLUE-S模型重金属污染区域空间优化配置研究[J].江苏农业科学,2014,42(06):326.
 Liu Yaping,et al.Study on space optimization of heavy metal pollution area based on CLUE-S model[J].Jiangsu Agricultural Sciences,2014,42(05):326.
[7]毛雪飞,吴羽晨,张家洋.重金属污染对土壤微生物及土壤酶活性影响的研究进展[J].江苏农业科学,2015,43(05):7.
 Mao Xuefei,et al.Research progress on effects of heavy metal pollution on soil microorganism and soil enzyme activity[J].Jiangsu Agricultural Sciences,2015,43(05):7.
[8]石娟娟,赵艳玲,何厅厅,等.金矿区土壤铅和铜空间结构及变异规律[J].江苏农业科学,2014,42(07):373.
 Shi Juanjuan,et al.Spatial structure and variation of lead and copper in goldfields soil[J].Jiangsu Agricultural Sciences,2014,42(05):373.
[9]崔世友,张蛟蛟.沿海滩涂野生叶用芥菜的耐盐性及利用潜力[J].江苏农业科学,2014,42(12):397.
 Cui Shiyou,et al.Salinity tolerance and utilization potential of wild Brassica juncea in tidal field[J].Jiangsu Agricultural Sciences,2014,42(05):397.
[10]李书幻,温祝桂,陈亚茹,等.我国蔬菜重金属污染现状与对策[J].江苏农业科学,2016,44(08):231.
 Li Shuhuan,et al.Current situation and countermeasures of Chinas vegetable heavy metal pollution[J].Jiangsu Agricultural Sciences,2016,44(05):231.

备注/Memo

备注/Memo:
收稿日期:2015-12-06
基金项目:云南省教育厅科研项目(编号:2015Y296);云南省高校优势特色重点学科(生态学)建设项目。
作者简介:杨桂英(1978—),女,山西浑源人,博士研究生,主要从事植物生态学方面的研究。E-mail:yanggy166@163.com。
更新日期/Last Update: 2016-05-25