|本期目录/Table of Contents|

[1]张亚莉,张乃迁,罗锡文,等.水中悬浮物浓度的检测方法研究进展[J].江苏农业科学,2016,44(05):20-23.
 Zhang Yali,et al.Research progress of detection methods of suspended sediment concentration in water environment[J].Jiangsu Agricultural Sciences,2016,44(05):20-23.
点击复制

水中悬浮物浓度的检测方法研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第44卷
期数:
2016年05期
页码:
20-23
栏目:
专论
出版日期:
2016-05-25

文章信息/Info

Title:
Research progress of detection methods of suspended sediment concentration in water environment
作者:
张亚莉1 张乃迁2 罗锡文1 杨广文1 谢金延1 曾伟渺1 欧阳健燊1
1.华南农业大学工程学院/南方农业机械与装备关键技术教育部重点实验室,广东广州 510642;2.Biological and Agricultural Engineering Department,Kansas State University,Manhattan K S 66502,USA
Author(s):
Zhang Yaliet al
关键词:
悬浮物非点源污染最大日负荷最佳管理操作
Keywords:
-
分类号:
X52
DOI:
-
文献标志码:
A
摘要:
水中悬浮物是重要的农业非点源污染物之一,也是水质评价的重要研究对象,对水中悬浮物浓度的有效检测有助于确定相关水域的悬浮物最大日负荷(total maximum daily loads,TMDL)以及相应的最佳管理操作(best management practice,BMP)。对水中悬浮物浓度的检测方法,包括传统称质量法、光学传感器、激光衍射、遥感、声学、图像处理、电容等方法进行了总结和归纳,分析各自的优势和存在的问题并提出了建议。结果表明,在利用遥感技术、水中传感器研究的基础上,从空间、地面进行信息采集和融合,并开展多源实时监测水中悬浮物浓度的研究是未来的发展方向。
Abstract:
-

参考文献/References:

[1]USGS. Water science glossary of terms[EB/OL]. (2015-03-08)[2015-10-15]. http://ga.water.usgs.gov/edu/dictionary.html.
[2]EPA. Report of the federal advisory committee on the total maximum daily load (TMDL) program[R]. Washington D C:Environmental Protection Agency,1998.
[3]EPA. Polluted runoff (Nonpoint Source Pollution)[EB/OL]. (2010-01-13)[2015-10-15]. http://www.epa.gov/owow/NPS/qa.html.
[4]王鲁宁,魏皓,赵亮.光衰减系数与悬浮颗粒物浓度的关系[J]. 中国海洋大学学报:自然科学版,2014,44(4):8-14.
[5]Henley W F,Patterson M A,Neves R J,et al. Effects of sedimentation and turbidity on lotic food webs:a concise review for natural resource managers[J]. Reviews in Fisheries Science,2000,8(2):125-139.
[6]Cochrane T A,Norton L D,Castro C,et al. Development of a river sediment transport monitoring system for large reservoirs[J]. Applied Engineering in Agriculture,2004,20(6):771-781.
[7]陈武强.测定水中悬浮物的影响因素及解决方法[J]. 化学工程与装备,2010(7):144-145.
[8]EPA. Protocol for developing sediment TMDLs[EB/OL].(1999-10-01)[2015-11-01]. http://nepis.epa.gov/Exe/Zy PDF.cgi/20004P3U.PDF?Dockey=20004P3U.PDF.
[9]国家环境保护总局.水和废水监测分析方法编委会[M]. 4版.北京:中国环境科学出版社,2002.
[10]冯胜.提高测定水中悬浮物准确率的方法[J]. 化学工程与装备,2011(10):204-205.
[11]Burkhead N M,Jelks H L. Effects of suspended sediment on the reproductive success of the tricolor shiner,a crevice-spawning minnow[J]. Transactions of the American Fisheries Society,2001,130(5):959-968.
[12]Daraigan S G.,Matjafri M Z,Abdullah K,et al. A simple instrument for measuring total suspended solids in polluted marine waters[C]. New York:Proceedings of 2005 Asian Conference on Sensors and the International Conference on New Techniques in Pharmaceutical and Biomedical Research,IEEE. 2005:219-221.
[13]Daraigan S G.,Matjafri M Z,Abdullah K,et al. Multi-spectral optical sensor based on light scattering for measuring total suspended solids[C]. Bellingham,W A:Proceedings of SPIE-The International Society for Optical Engineering,SPIE,2006:6201,62010W-1-62010W-6.
[14]Mckee L J,Ganju N K,Schoellhamer D H. Estimates of suspended sediment entering San Francisco Bay from the Sacramento and San Joaquin Delta,San Francisco Bay,California[J]. Journal of Hydrology,2006,323(1):335-352.
[15]Gregory J,Nelson D W. Monitoring of aggregates in flowing suspensions[J]. Colloids & Surfaces,1986,18(2/3/4):175-188.
[16]Maa J P Y. Laboratory measurements of instantaneous sediment concentration under waves[J]. IEEE Journal of Oceanic Engineering,1988,13(4):299-302.
[17]Buttmann M. Suspended solids measurement as reliable process control[C]. Houston,T X:Instrument Society of America. ISA TECH EXPO Technology Update Conference Proceedings,2001,413(1):563-572.
[18]Stoll M Q. Design of a real-time,optical sediment concentration sensor[D]. Ks:Kansas State University,2004.
[19]Zhang Y L. An optical sensor for in-stream monitoring of suspended sediment concentration[D]. Ks:Kansas State University,Department of Biological & Agricultural Engineering,2009.
[20]Gao P,Pasternack G B,Bali K M,et al. Estimating suspended sediment concentration using turbidity in an irrigation-dominated southeastern California watershed[J]. Journal of Irrigation and Drainage Engineering-ASCE,2008,134(2):250-259.
[21]Sadar M. Turbidity instrumentation-an overview of todays available technology[EB/OL]. [2015-11-01]. http://water.usgs.gov/osw/techniques/TSS/sadar.pdf.
[22]翟世奎,张怀静,范德江,等. 长江口及其邻近海域悬浮物浓度和浊度的对应关系[J]. 环境科学学报,2005,25(5):693-699.
[23]APHA,AWWA,WEF. Standard methods for the examination of water and wastewater[M]. Washington D C:APHA,2012.
[24]EPA. Guidance manual for compliance with the interim enhanced surface water treatment rule:Turbidity provisions[R]. Washington D C:United States Environmental Protection Agency,1999.
[25]Riley S J. The sediment concentration turbidity relation:its value in monitoring at Ranger Uranium Mine,Northern Territory,Australia[J]. Catena,1998,32(1):1-14.
[26]Davies-Colley R J,Smith D G. Turbidity,suspended sediment,and water clarity:a review[J]. Journal of the American Water Resources Association,2001,37(5):1085-1101.
[27]Marquis P. Turbidity and suspended sediment as measures of water quality[J]. Watershed Management Bulletin,2005,9(1):21-23.
[28]曹江荣,赵英新,李兴萍.激光衍射粒度分布仪在水质浊度监测中的应用[J]. 聚酯工业,2013,26(6):20-21,43.
[29]Wren G D,Barkdoll B D,Kuhnle R A,et al. Field techniques for suspended-sediment measurement[J]. Journal of Hydraulic Engineering,2000,126(2):97-104.
[30]Gray J R,Melis T S,Patino E,et al. U.S. geological survey research on surrogate measurements for suspended sediment[EB/OL]. [2015-11-01]. http://www.tucson.ars.ag.gov/icrw/Proceedings/Gray.pdf.
[31]Agrawal Y C,Pottsmith H C. Instruments for particle size and settling velocity observations in sediment transport[J]. Marine Geology,2000,168(1/2/3/4):89-114.
[32]Agrawal Y C,Pottsmith H C. Laser diffraction sensors measure concentration and size distribution of suspended sediment[EB/OL]. [2015-11-01]. http://www.comm-tec.com/Library/Technical_Papers/Various/cool/p12Agrawal_Pottsmith.pdf.
[33]Melis T. S,Topping D. J,. Rubin D M. Testing laser-based sensors for continuous in situ monitoring of suspended sediment in the Colorado River,Arizona[C]. Proceedings of the Oslo Workshop (Erosion and Sediment Transport Measurement in Rivers:Technological and Methodological Advances). Oslo,Norway:IAHS Press,2002:21-27.
[34]Wei J W,Shi X F,Fang X S,et al. Measurements of suspended particulate matter with laser in-situ scattering and transmissometry in the Jiaozhou Bay in China[J]. Acta Oceanologica Sinica,2007,26(1):55-65.
[35]杨大伟.基于实验和实测光谱的太湖悬浮物浓度估算模型研究[D]. 南京:南京师范大学,2008.
[36]金鑫,李云梅,王桥,等. 基于生物光学模型的巢湖悬浮物浓度反演[J]. 环境科学,2010,31(12):2882-2889.
[37]王繁,周斌,徐建明,等. 基于实测光谱的杭州湾悬浮物浓度遥感反演模式[J]. 环境科学,2008(11):3022-3026.
[38]孙家锋.河口海域水体悬浮物浓度遥感反演计算的研究[D]. 大连:大连海事大学,2007.
[39]张伟. 基于HJ CCD影像的鄱阳湖总悬浮物浓度反演与时空化研究[D]. 武汉:武汉大学,2012.
[40]查桂红.基于GOCI影像的内陆水体悬浮物浓度遥感估算研究[D]. 南京:南京师范大学,2013.
[41]Thorne P D,Hanes D M. A review of acoustic measurement of small-scale sediment processes[J]. Continental Shelf Research,2002,22(4):603-632.
[42]Gartner J W. Estimating suspended solids concentrations from backscatter intensity measured by acoustic Doppler current profiler in San Francisco Bay,California[J]. Marine Geology,2004,211(3/4):169-187.
[43]Wren D G,Kuhnle R A. Surrogate techniques for Suspended-Sediment measurement[EB/OL]. (2002-04-30)[2015-11-01]. http://water.usgs.gov/osw/techniques/TSS/wren.pdf.
[44]Meral R. Laboratory evaluation of acoustic backscatter and LISST methods for measurements of suspended sediments[J]. Sensors,2008,8(2):979-993.
[45]Li X Y,Lei T W,Wang W,et al. Capacitance sensors for measuring suspended sediment concentration[J]. Catena,2005,60(3):227-237.

相似文献/References:

[1]汤爱萍,万金保,李爽,等.环境系统工程在农业非点源污染控制中的应用[J].江苏农业科学,2013,41(06):353.
 Tang Aiping,et al.Application of environment system engineering in controlling agricultural non-point source pollution[J].Jiangsu Agricultural Sciences,2013,41(05):353.
[2]徐晋池,谢崇宝,张国华,等.我国村镇饮用水源非点源污染研究进展[J].江苏农业科学,2013,41(08):357.
 Xu Jinchi,et al.Research progress of non-point source pollution for Chinas village drinking water resources[J].Jiangsu Agricultural Sciences,2013,41(05):357.
[3]王迪,王明新,钱中平,等.基于非点源污染约束的江苏省农业生产效率分析[J].江苏农业科学,2017,45(17):322.
 Wang Di,et al.Analysis of agricultural production efficiency in Jiangsu Province based on non-point source pollution constraints[J].Jiangsu Agricultural Sciences,2017,45(05):322.
[4]林春霏,左军成,左常圣,等.霞浦围江渔港工程对附近海域水文环境的影响[J].江苏农业科学,2018,46(02):198.
 Lin Chun,et al.Influence of Xiapu Weijiang fishing port project on hydrological environment of nearby sea area[J].Jiangsu Agricultural Sciences,2018,46(05):198.

备注/Memo

备注/Memo:
收稿日期:2015-11-29
基金项目:国家“863”计划(编号:2011AA100704);国家自然科学基金(编号:51309103);华南农业大学大学生创新创业训练计划(编号:201410564042)。
作者简介:张亚莉(1975—),女,山东菏泽人,博士,讲师,研究方向为农情信息快速检测方法及传感器研制。E-mail:ylzhang@scau.edu.cn。
通信作者:罗锡文,硕士,教授,中国工程院院士,研究方向为南方农业机械与装备关键技术、精准农业关键技术。E-mail:xwluo@scau.edu.cn。
更新日期/Last Update: 2016-05-25