|本期目录/Table of Contents|

[1]朱峰,陈孝仁,钱坤,等.生物胁迫相关NAC1转录因子的生物信息学分析[J].江苏农业科学,2016,44(10):43-49.
 Zhu Feng,et al.Bioinformatics analysis of biotic stress related NAC1 transcription factors[J].Jiangsu Agricultural Sciences,2016,44(10):43-49.
点击复制

生物胁迫相关NAC1转录因子的生物信息学分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第44卷
期数:
2016年10期
页码:
43-49
栏目:
生物技术
出版日期:
2016-10-25

文章信息/Info

Title:
Bioinformatics analysis of biotic stress related NAC1 transcription factors
作者:
朱峰 陈孝仁 钱坤 纪兆林 孔维文 杨益众
扬州大学园艺与植物保护学院,江苏扬州 225009
Author(s):
Zhu Fenget al
关键词:
生物胁迫NAC1转录因子生物信息学抗生物逆境特性
Keywords:
-
分类号:
Q78
DOI:
-
文献标志码:
A
摘要:
植物NAC1转录因子在调控植物的抗生物胁迫反应中起着重要的作用。为探究生物逆境相关NAC1转录因子的功能,通过生物信息学的方法对8个生物逆境胁迫相关NAC1蛋白氨基酸序列一致性、氨基酸组成、理化性质、亲/疏水性、保守结构域、磷酸化位点、亚细胞定位、二级结构及三级结构等进行了预测和分析。结果表明,8个生物逆境胁迫相关NAC1蛋白N-端保守性较强,包括5个保守的亚结构域,共同组成NAC1结构域。C-端含有多个保守的氨基酸,具有转录激活功能。同时蛋白中含有多个丝氨酸(S)、苏氨酸(T)和酪氨酸(Y)磷酸化位点。8个NAC1蛋白都为亲水性蛋白,大多定位于细胞核,个别定位于细胞质或叶绿体。二级结构则以α-螺旋和β-折叠为主。8个NAC1蛋白三维结构上的相似性暗示了功能上存在相似。本研究结果为进一步挖掘生物逆境相关NAC1转录因子的功能和改良植物抗生物逆境特性提供理论依据。
Abstract:
-

参考文献/References:

[1]Riechmann J L,Heard J,Martin G,et al. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes[J]. Science,2000,290(5499):2105-2110.
[2]Olsen A N,Ernst H A,Leggio L L,et al. NAC transcription factors:structurally distinct,functionally diverse[J]. Trends in Plant Science,2005,10(2):79-87.
[3]Souer E,Vanhouwelingen A,Kloos D,et al. The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries[J]. Cell,1996,85(2):159-170.
[4]Aida M,Ishida T,Fukaki H,et al. Genes involved in organ separation in Arabidopsis:an analysis of the cup-shaped cotyledon mutant[J]. The Plant Cell,1997,9(6):841-857.
[5]Zheng X,Chen B,Lu G,et al. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance[J]. Biochemical and Biophysical Research Communications,2009,379(4):985-989.
[6]Nuruzzaman M,Sharoni A M,Satoh K,et al. Comprehensive gene expression analysis of the NAC gene family under normal growth conditions,hormone treatment,and drought stress conditions in rice using near-isogenic lines (NILs) generated from crossing Aday Selection (drought tolerant) and IR64[J]. Molecular Genetics and Genomics,2012,287(5):389-410.
[7]Nikovics K,Blein T,Peaucelle A,et al. The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis[J]. The Plant Cell,2006,18(11):2929-2945.
[8]Guo Y,Gan S. AtNAP,a NAC family transcription factor,has an important role in leaf senescence[J]. The Plant Journal,2006,46(4):601-612.
[9]Uauy C,Distelfeld A,Fahima T,et al. A NAC gene regulating senescence improves grain protein,zinc,and iron content in wheat[J]. Science,2006,314(583):1298-1301.
[10]Balazadeh S,Siddiqui H,Allu A D,et al. A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence[J]. The Plant Journal:for Cell and Molecular Biology,2010,62(2):250-264.
[11]Kim S Y,Kim S G,Kim Y S,et al. Exploring membrane-associated NAC transcription factors in Arabidopsis:implications for membrane biology in genome regulation[J]. Nucleic Acids Research,2007,35(1):203-213.
[12]He X J,Mu R L,Cao W H,et al. AtNAC2,a transcription factor downstream of ethylene and auxin signaling pathways,is involved in salt stress response and lateral root development[J]. The Plant Journal,2005,44(6):903-916.
[13]Kim S G,Lee A K,Yoon H K,et al. A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination[J]. The Plant Journal,2008,55(1):77-88.
[14]Delessert C,Kazan K,Wilson I W,et al. The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis[J]. The Plant Journal,2005,43(5):745-757.
[15]Lin R M,Zhao W S,Meng X B,et al. Rice gene OsNAC19 encodes a novel NAC-domain transcription factor and responds to infection by Magnaporthe grisea[J]. Plant Science,2007,172(1):120-130.
[16]Donze T,Qu F,Twigg P,et al. Turnip crinkle virus coat protein inhibits the basal immune response to virus invasion in Arabidopsis by binding to the NAC transcription factor TIP[J]. Virology,2014,449(20):207-214.
[17]Nuruzzaman M,Sharoni A M,Kikuchi S. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants[J]. Frontiers in Microbiology,2013,4(4):248.
[18]Oh S K,Lee S,Yu S H,et al. Expression of a novel NAC domain-containing transcription factor (CaNAC1) is preferentially associated with incompatible interactions between chili pepper and pathogens[J]. Planta,2005,222(5):876-887.
[19]Mysore K S,Crasta O R,Tuori R P,et al. Comprehensive transcript profiling of Pto-and Prf-mediated host defense responses to infection by Pseudomonas syringae pv. tomato[J]. The Plant Journal,2002,32(3):299-315.
[20]Huang W,Miao M,Kud J,et al. SlNAC1,a stress-related transcription factor,is fine-tuned on both the transcriptional and the post-translational level[J]. The New Phytologist,2013,197(4):1214-1224.
[21]Le Hénanff G,Profizi C,Courteaux B,et al. Grapevine NAC1 transcription factor as a convergent node in developmental processes,abiotic stresses,and necrotrophic/biotrophic pathogen tolerance[J]. Journal of Experimental Botany,2013,64(16):4877-4893.
[22]Mcgrann G R,Steed A,Burt C A,et al. Contribution of the drought tolerance-related Stress-responsive NAC1 transcription factor to resistance of barley to Ramularia leaf spot[J]. Molecular Plant Pathology,2015,16(2):201-209.
[23]Selth L A,Dogra S C,Rasheed M S,et al. A NAC domain protein interacts with tomato leaf curl virus replication accessory protein and enhances viral replication[J]. The Plant Cell,2005,17(1):311-325.
[24]Tamura K,Peterson D,Peterson N,et al. MEGA5:molecular evolutionary genetics analysis using maximum likelihood,evolutionary distance,and maximum parsimony methods[J]. Molecular Biology and Evolution,2011,28(10):2731-2739.
[25]Gasteiger E,Hoogland C,Gattiker A,et al. Protein identification and analysis tools on the ExPASy server [M]. The proteomics protocols handbook. New York:Humana Press,2005:571-607.
[26]Blom N,Gammeltoft S,Brunak S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites[J]. Journal of Molecular Biology,1999,294(5):1351-1362.
[27]Horton P,Park K J,Obayashi T,et al. WoLF PSORT:protein localization predictor[J]. Nucleic Acids Research,2007,35(Web Server issue):W585-W587.
[28]Arnold K,Bordoli L,Kopp J,et al. The SWISS-MODEL workspace:a web-based environment for protein structure homology modelling[J]. Bioinformatics,2006,22(2):195-201.
[29]Zhu F,Xu M,Wang S,et al. Prokaryotic expression of pathogenesis related protein 1 gene from Nicotiana benthamiana:antifungal activity and preparation of its polyclonal antibody[J]. Biotechnology Letters,2012,34(5):919-924.
[30]Sadowski I,Ma J,Triezenberg S,et al. GAL4-VP16 is an unusually potent transcriptional activator[J]. Nature,1988,335(6190):563-564.
[31]Courey A J,Holtzman D A,Jackson S P,et al. Synergistic activation by the glutamine-rich domains of human transcription factor Sp1[J]. Cell,1989,59(5):827-836.
[32]Mermod N,Oneill E A,Kelly T J,et al. The proline-rich transcriptional activator of CTF/NF-I is distinct from the replication and DNA binding domain[J]. Cell,1989,58(4):741-753. [33]陶华平. 核定位信号研究进展[J]. 生物学通报,2014,49(8):5-10.
[34]Kalderon D,Richardson W D,Markham A F,et al. Sequence requirements for nuclear location of simian virus 40 large-T antigen[J]. Nature,1984,311(5981):33-38.
[35]Dingwall C,Laskey R A. Nuclear targeting sequences—a consensus?[J]. Trends in Biochemical Sciences,1991,16(12):478-481.
[36]Nogueira F S,Schlogl P S,Camargo S R,et al. SsNAC23,a member of the NAC domain protein family,is associated with cold,herbivory and water stress in sugarcane[J]. Plant Science,2005,169(1):93-106.
[37]李伟,韩蕾,钱永强,等. 非生物逆境胁迫相关NAC转录因子的生物信息学分析[J]. 西北植物学报,2012,32(3):454-464.
[38]康美玲,周振华,田忠景,等. 抗逆性转录因子NAC的生物信息学分析[J]. 湖北农业科学,2014,53(17):4199-4204.
[39]Ernst H A,Olsen A N,Larsen S,et al. Structure of the conserved domain of ANAC,a member of the NAC family of transcription factors[J]. EMBO Reports,2004,5(3):297-303.
[40]Chen Q,Wang Q,Xiong L,et al. A structural view of the conserved domain of rice stress-responsive NAC1[J]. Protein & Cell,2011,2(1):55-63.

相似文献/References:

[1]郑佳秋,吴永成,王薇薇,等.植物逆境相关长链非编码RNA的研究进展[J].江苏农业科学,2020,48(04):19.
 Zheng Jiaqiu,et al.Research progress on plant stress-related long non-coding RNA[J].Jiangsu Agricultural Sciences,2020,48(10):19.
[2]李佳佳,门海涛,高丽美.褪黑素的生理功能及应用研究进展[J].江苏农业科学,2023,51(8):17.
 Li Jiajia,et al.Research progress on physiological function and application of melatonin[J].Jiangsu Agricultural Sciences,2023,51(10):17.
[3]陈子强,李刚,颜静宛,等.玉米CBS基因家族的鉴定和特征分析[J].江苏农业科学,2024,52(4):41.
 Chen Ziqiang,et al.Identification and characterization of CBS gene family in maize[J].Jiangsu Agricultural Sciences,2024,52(10):41.
[4]马红义,李珊,曹爽,等.MAPK级联调控作物响应生物胁迫的研究进展[J].江苏农业科学,2024,52(6):1.
 Ma Hongyi,et al.Research progress of MAPK cascade regulation of crop response to biological stress[J].Jiangsu Agricultural Sciences,2024,52(10):1.

备注/Memo

备注/Memo:
收稿日期:2016-04-14
基金项目:国家自然科学基金(编号:31500209);江苏省高校自然科学研究面上项目(编号:15KJB210007);江苏省扬州市自然科学基金-青年科技人才项目(编号:YZ2015106)。
作者简介:朱峰(1985—),男,江西九江人,博士,讲师,主要从事植物病理与分子生物学研究。E-mail:zhufeng@yzu.edu.cn。
更新日期/Last Update: 2016-10-25