|本期目录/Table of Contents|

[1]雷明,王之,王加宾,等.蜻蜓凤梨AfERF109基因的克隆及响应乙烯的表达特性分析[J].江苏农业科学,2016,44(11):51-56.
 Lei Ming,et al.Cloning and ethylene expression characteristic analysis of AfERF109 gene of Aechmea fasciata treated with exogenous ethylene[J].Jiangsu Agricultural Sciences,2016,44(11):51-56.
点击复制

蜻蜓凤梨AfERF109基因的克隆及响应乙烯
的表达特性分析
(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第44卷
期数:
2016年11期
页码:
51-56
栏目:
生物技术
出版日期:
2016-11-25

文章信息/Info

Title:
Cloning and ethylene expression characteristic analysis of AfERF109 gene of Aechmea fasciata treated with exogenous ethylene
作者:
雷明 王之 王加宾 李志英 徐立
中国热带农业科学院热带作物品种资源研究所/农业部华南作物基因资源与种质创新重点实验室,海南儋州 571737
Author(s):
Lei Minget al
关键词:
蜻蜓凤梨AfERF109克隆乙烯表达特性分析
Keywords:
-
分类号:
S668.301
DOI:
-
文献标志码:
A
摘要:
以热带观赏花卉蜻蜓凤梨(Aechemia fasciata)为材料,在分析蜻蜓凤梨转录组数据的基础上,结合cDNA末端快速扩增(rapid amplification of cDNA ends,简称RACE)技术克隆了APETALA2/乙烯反应元件结合蛋白(APETALA2/Ethylene Response Element Binding Protein,简称AP2/EREBP)家族的1个转录因子编码序列,并将其命名为AfERF109AfERF109基因cDNA全长939 bp,开放阅读框(open reading frame,ORF)长762 bp,编码的蛋白含253个氨基酸残基。AfERF109分子量为28.275 1 ku,理论等电点为5.24;AfERF109不含信号肽和跨膜域,预测其定位于细胞核;AfERF109含有1个典型的AP2结构域,该结构域的二、三级结构构象保守;系统进化分析该蛋白分属ERF亚族的B-4类。实时荧光定量PCR分析表明,AfERF109转录本的表达量随着植株年龄的增长上调,在开花后的花柄中表达量最高。此外,AfERF109转录本的表达量受外源乙烯处理呈现正调控趋势。研究结果初步证实AfERF109参与乙烯调控路径,可能参与蜻蜓凤梨营养生长到生殖生长的时期转换及花柄的发育,为进一步研究AfERF109基因功能、通过基因工程手段调控蜻蜓凤梨开花提供了理论依据。
Abstract:
-

参考文献/References:

[1]Luther H E. An alphabetical list of bromeliad binomials[M]. Florida:The Bromeliad Society International,2010:4.
[2]Versieux L M,Barbara T,Wanderley M,et al. Molecular phylogenetics of the Brazilian giant bromeliads(Alcantarea,Bromeliaceae):implications for morphological evolution and biogeography[J]. Molecular Phylogenetic Evolution,2012,64(1):177-189.
[3]龚明霞,何铁光,黄如葵,等. 观赏凤梨组培快繁技术研究进展[J]. 广西农业科学,2010,41(5):412-415.
[4]李志英. 凤梨科植物组织培养技术[M]. 北京:中国农业出版社,2014:1.
[5]Turnbull C G,Sinclair E R,Anderson K L,et al. Routes of ethephon uptake in pineapple(Ananas comosus)and reasons for failure of flower induction[J]. Journal of Plant Growth Regulation,1999,18(4):145-152.
[6]Kuan C S,Yu C W,Lin M L,et al. Foliar application of aviglycine reduces natural flowering in pineapple[J]. HortScience,2005,40(1):123-126.
[7]Dukovski D,Bernatzky R,Han S. Flowering induction of Guzmania by ethylene[J]. Scientia Horticulturae,2006,110(1):104-108.
[8]Trusov Y,Botella J R. Silencing of the ACC synthase gene ACACS2 causes delayed flowering in pineapple[Ananas comosus (L.) Merr.][J]. Journal of Experimental Botany,2006,57(14):3953-3960.
[9]Müller M,Munné-Bosch S. Ethylene response factors:a key regulatory hub in hormone and stress signaling[J]. Plant Physiology,2015,169(1):32-41.
[10]Shakeel S N,Gao Z,Amir M,et al. Ethylene regulates levels of ethylene receptor/CTR1 signaling complexes in Arabidopsis thaliana[J]. The Journal of Biological Chemistry,2015,290(19):12415-12424.
[11]Kieber J J,Rothenberg M,Roman G,et al. CTR1,a negative regulator of the ethylene response pathway in Arabidopsis,encodes a member of the raf family of protein kinases[J]. Cell,1993,72(3):427-441.
[12]Alonso J M,Hirayama T,Roman G,et al. EIN2,a bifunctional transducer of ethylene and stress responses in Arabidopsis[J]. Science,1999,284(5423):2148-2152.
[13]Bleecker A B. Ethylene perception and signaling:an evolutionary perspective[J]. Trends in Plant Science,1999,4(7):269-274.
[14]Chang C,Stadler R. Ethylene hormone receptor action in Arabidopsis[J]. BioEssays:News and Reviews in Molecular,Cellular and Developmental Biology,2001,23(7):619-627.
[15]Solano R,Stepanova A,Chao Q,et al. Nuclear events in ethylene signaling:a transcriptional cascade mediated by ethylene-insensitive3 and ethylene-response-factor1[J]. Genes & Development,1998,12(23):3703-3714.
[16]Wessler S R. Homing into the origin of the AP2 DNA binding domain[J]. Trends in Plant Science,2005,10(2):54-56.
[17]Licausi F,Ohme-Takagi M,Perata P. APETALA2/Ethylene Responsive Factor(AP2/ERF)transcription factors:mediators of stress responses and developmental programs[J]. The New Phytologist,2013,199(3):639-649.
[18]Ohta M,Matsui K,Hiratsu K,et al. Repression domains of class Ⅱ ERF transcriptional repressors share an essential motif for active repression[J]. The Plant Cell,2001,13(8):1959-1968.
[19]Song C P,Agarwal M,Ohta M,et al. Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses[J]. The Plant Cell,2005,17(8):2384-2396.
[20]Zhang G Y,Chen M,Chen X P,et al. Isolation and characterization of a novel EAR-motif-containing gene GmERF4 from soybean (Glycine max L.)[J]. Molecular Biology Reports,2009,37(2):809-818.
[21]Zhang G Y,Chen M,Li L C,et al. Overexpression of the soybean GmERF3 gene,an AP2/ERF type transcription factor for increased tolerances to salt,drought,and diseases in transgenic tobacco[J]. Journal of Experimental Botany,2009,60(13):3781-3796.
[22]Zhai Y,Li J W,Li X W,et al. Isolation and characterization of a novel transcriptional repressor GmERF6 from soybean[J]. Biologia Plantarum,2012,57(1):26-32.
[23]Ohme-Takagi M,Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element[J]. The Plant Cell,1995,7(2):173-182.
[24]Yi S Y,Kim J H,Joung Y H,et al. The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis[J]. Plant Physiology,2004,136(1):2862-2874.
[25]McGrath K C. Repressor-and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression[J]. Plant Physiology,2005,139(2):949-959.
[26]Zuo K J,Qin J,Zhao J Y,et al. Over-expression GbERF2 transcription factor in tobacco enhances brown spots disease resistance by activating expression of downstream genes[J]. Gene,2007,391(1/2):80-90.
[27]Cheng M C,Liao P M,Kuo W W,et al. The Arabidopsis ethylene response factor1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals[J]. Plant Physiology,2013,162(3):1566-1582.
[28]Li Z Y,Wang J B,Zhang X Q,et al. Transcriptome sequencing determined flowering pathway genes in Aechmea fasciata treated with ethylene[J]. Journal of Plant Growth Regulation,2016,35(2):316-329.
[29]Lei M,Li Z Y,Wang J B,et al. AfAP2-1,an age-dependent gene of Aechmea fasciata,responds to exogenous ethylene treatment[J]. International Journal of Molecular Sciences,2016,17(3):303.
[30]丛汉卿,信彩云,张银东,等. ‘阿蒂擎天’凤梨谷胱甘肽-S-转移酶基因的克隆与乙烯诱导表达特性的初步分析[J]. 分子植物育种,2013,11(3):365-370.
[31]Nakano T,Suzuki K,Fujimura T,et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiology,2006,140(2):411-432.
[32]Zhang G,Chen M,Chen X,et al. Phylogeny,gene structures,and expression patterns of the ERF gene family in soybean(Glycine max L.)[J]. Journal of Experimental Botany,2008,59(15):4095-4107.
[33]Wang X P,Liu S,Tian H N,et al. The small ethylene response factor ERF96 is involved in the regulation of the abscisic acid response in Arabidopsis[J]. Frontiers in Plant Science,2015,6:1064-1076.
[34]Tuan P A,Bai S L,Saito T,et al. Involvement of EARLY BUD-BREAK,an AP2/ERF transcription factor gene,in bud break in Japanese pear(Pyrus pyrifolia Nakai)lateral flower buds:expression,histone modifications,and possible target genes[J]. Plant and Cell Physiology,2016,57(5):1038-1047.
[35]Wisniewski M,Norelli J,Artlip T. Overexpression of a peach CBF gene in apple:a model for understanding the integration of growth,dormancy,and cold hardiness in woody plants[J]. Frontiers in Plant Science,2015,6:85.
[36]Busov V,Carneros E,Yakovlev I. EARLY BUD-BREAK1(EBB1)defines a conserved mechanism for control of bud-break in woody perennials[J]. Plant Signaling & Behavior,2016,11(2):e1073873.
[37]Liu J X,Li J Y,Wang H N,et al. Identification and expression analysis of ERF transcription factor genes in petunia during flower senescence and in response to hormone treatments[J]. Journal of Experimental Botany,2011,62(2):825-840.
[38]Yu Y W,Yang D X,Zhou S R,et al. The ethylene response factor OsERF109 negatively affects ethylene biosynthesis and drought tolerance in rice[J]. Protoplasma,2016:1-8.
[39]Zhang H W,Zhang J F,Quan R D,et al. EAR motif mutation of rice OsERF3 alters the regulation of ethylene biosynthesis and drought tolerance[J]. Planta,2013,237(6):1443-1451.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2016-05-18
基金项目:国家自然科学基金面上项目(编号:31372106);海南省自然科学基金面上项目(编号:20163127)。
作者简介:雷明(1982—),男,安徽池州人,博士,助理研究员,主要从事凤梨科植物开花和光合分子机理研究。Tel:(0898)23300284;E-mail:leiming_catas@126.com。
通信作者:徐立,博士,研究员,主要从事凤梨、香蕉等热带作物生长发育调控机理研究。Tel:(0898)23300284;E-mail:xllzy@263.net。
更新日期/Last Update: 2016-11-25