|本期目录/Table of Contents|

[1]李秀芝,黄斌,范弟武,等.不同浸提剂及对照设置对土壤脲酶活性测定的影响[J].江苏农业科学,2016,44(11):427-430.
 Li Xiuzhi,et al.Influences of different leaching agent and control on determination of urease activity[J].Jiangsu Agricultural Sciences,2016,44(11):427-430.
点击复制

不同浸提剂及对照设置对土壤脲酶活性测定的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第44卷
期数:
2016年11期
页码:
427-430
栏目:
资源与环境
出版日期:
2016-11-25

文章信息/Info

Title:
Influences of different leaching agent and control on determination of urease activity
作者:
李秀芝1 黄斌1 范弟武1 卞玥1 韩建刚12
1.南京林业大学生物与环境学院,江苏南京 210037;2.江苏省南方现代林业协同创新中心,江苏南京 210037
Author(s):
Li Xiuzhiet al
关键词:
土壤脲酶活性浸提剂对照培养
Keywords:
-
分类号:
S154.2
DOI:
-
文献标志码:
A
摘要:
关于土壤脲酶活性的测定,不同学者选用的浸提剂以及对照的设置往往大相径庭,对于这些不同处理方式测得的脲酶活性的差异,目前还缺乏相应的比较研究。选用1.0 mol/L KCl+0.01 mol/L HCl、2.5 mol/L KCl+0.1 mmol/L Ag2SO4、2.5 mol/L KCl、2.0 mol/L KCl以及1.0 mol/L KCl等5种不同的浸提剂,设置对照培养2 h与对照不培养2种对照方法,以洪泽湖湿地土壤为例,比较不同浸提剂及对照设置方法间土壤脲酶活性的差异。结果表明,在对照培养条件下,测得的脲酶活性最大达到0.098 μg/(kg·h),浸提剂1.0 mol/L KCl+0.01 mol/L HCl;脲酶活性最小为0.035 μg/(kg·h),浸提剂2.5 mol/L KCl+0.1 mmol/L Ag2SO4。与对照不培养组相比,对照培养2 h组更容易获得较高的脲酶活性,当浸提剂分别为2.5 mol/L KCl+0.1 mmol/L Ag2SO4、2.0 mol/L KCl、1.0 mol/L KCl+0.01 mol/L HCl 时,对照培养组土壤脲酶活性分别是对照不培养的1.6、3.0、7.5倍。对于不同的抑制剂而言,1.0 mol/L KCl+0.01 mol/L HCl 是1.0 mol/L KCl的1.58 倍,而2.5 mol/L KCl+0.1 mmol/L Ag2SO4与2.5 mol/L KCl的差异较小,差值仅为0.001 μg/(kg·h)。
Abstract:
-

参考文献/References:

[1]关松荫. 土壤酶及其研究法[M]. 北京:农业出版社,1986:294-312.
[2]和文祥,朱铭莪. 陕西主要土壤脲酶活性与土壤肥力关系的研究[J]. 土壤学报,1997,34(4):392-398.
[3]王家,赵阳阳,代潭,等. Cu、Cd污染对土壤脲酶活性的影响研究[J]. 环境科学与管理,2014,39(11):45-48.
[4]丰骁,段建平,蒲小鹏,等. 土壤脲酶活性两种测定方法的比较[J]. 草原与草坪,2008(2):70-72.
[5]黄娟,李稹,张健. 改良靛酚蓝比色法测土壤脲酶活性[J]. 土木建筑与环境工程,2012(1):102-107.
[6]和文祥,朱铭莪,张一平. 汞、镉对土壤脲酶活性影响的研究Ⅰ.尿素浓度[J]. 应用生态学报,2002,13(2):191-193.
[7]Kandeler E,Gerber H. Short-term assay of soil urease activity using colorimetric determination of ammonium [J]. Biol Fert Soils,1988,6:68-72.
[8]Singh K P,Μandal T N,Tripathi S K,et al. Patterns of restoratim of soil physicochemical properties and microbial biomass in different landslide sites In the sal forest ecosystem of Nepal Himalaya[J]. Ecological of Engineering,2001,17(4):385-401.
[9]Tahatabai Μ A,Bremner Μ J,et al. And assay of urease activity in soil[J]. Soil Biol Biocheu,1972(4):479-487.
[10]Singh D K,Kumar S. Nitrate reductase,arginine deaminase,urease and dehydrogenase activities in natural soil (ridges with forest) and in cotton soil after acetamiprid treatments[J]. Chemosphere,2008,71(3):412-418.
[11]韩建刚,曹雪.典型滨海湿地干湿交替过程氮素动态的模拟研究[J]. 环境科学,2013,34(6):2383-2389.
[12]Μanunza B,Deiana S,Pintore Μ,et al. The binding uechanism of urea,hydroxamic acid and N-(N-butyl)-phosphoric trioxide to the urease active site:a comparative molecular dynamics study [J]. Soil Biol & Biocheu,1999,31:789-796.
[13]Dalal R C.Distribution,salinity,kinetics and thermodynamic characteristics of urease activity in vertical profile[J]. Aust J Soil Res,1985,23(1):49-60.
[14]Pettit N M,Smith A R,Freedman R B,et al. Soil urease - activity,stability and kinetic-properties[J]. Soil Biology & Biochemistry,1976,8(6):479-484.
[15]Burns R G. Enzyme activity in soil:location and a possible role in uicrobial ecology[J]. Soil Biol & Biochem,1982,12:432-427. [16]和文祥,蒋新,朱茂旭,等. 甲苯对土壤脲酶活性的影响[J]. 环境科学,2001,22(6):123-126.
[17]Zantua Μ I,Bremner J Μ. Comparison of methods of assaying urease activity in soils [J]. Soil Biol & Biocheu,1975,7:291-295
[18]Dalal R C. Efficient toluene on the energy barriers in urease activity of soils[J]. Soil Science,1975,120(4):256-260.
[19]Tabatabai Μ I,Bremner J Μ. Assay of ureaseactivity in soils [J]. Soil Biol & Biochem,1972,4:479-487.

相似文献/References:

[1]蒋宝南,刘腾飞,单建明,等.QuEChERS-GC/μECD法测定土壤中的毒死蜱残留量[J].江苏农业科学,2014,42(12):332.
 Jiang Baonan,et al.Determination of chlorpyrifos residues in soil by QuEChERS-GC/μECD[J].Jiangsu Agricultural Sciences,2014,42(11):332.
[2]李国锋,魏瑞成,王冉.高效液相色谱法测定土壤中联苯与间羟基苯甲酸残留[J].江苏农业科学,2014,42(12):316.
 Li Guofeng,et al.Determination of biphenyl and M-hydroxy benzoic acid residues in soil by high performance liquid chromatography[J].Jiangsu Agricultural Sciences,2014,42(11):316.
[3]史景允,于伟红,梁秋生.蓖麻对镉污染土壤的修复潜力[J].江苏农业科学,2014,42(11):386.
 Shi Jingyun,et al(8).Potential repairing of cadmium contaminated soil by castor oil plant[J].Jiangsu Agricultural Sciences,2014,42(11):386.
[4]何继山,梁杏,李静.土样浸提液电导率与盐分关系的逐步回归分析[J].江苏农业科学,2014,42(10):314.
 He Jishan,et al.Regression analysis of relationship between soil samples leaching solution conductivity and solinity[J].Jiangsu Agricultural Sciences,2014,42(11):314.
[5]徐洪文,卢妍.土壤碳矿化及活性有机碳影响因子研究进展[J].江苏农业科学,2014,42(10):4.
 Xu Hongwen,et al.Research progress on soil carbon mineralization and factors affecting active organic carbon[J].Jiangsu Agricultural Sciences,2014,42(11):4.
[6]李范,李娜,陈建中,等.基于磷脂脂肪酸提取方法的微生物群落结构研究[J].江苏农业科学,2014,42(09):323.
 Li Fan,et al.Study on microbial community structure based on phospholipid fatty acid extraction method[J].Jiangsu Agricultural Sciences,2014,42(11):323.
[7]张乐森,刘悦上,马金芝,等.山东省滨州市设施蔬菜土壤退化防治与修复对策[J].江苏农业科学,2013,41(07):141.
 Zhang Lesen,et al.Control and restoration strategies of facility vegetable soil degradation in Binzhou of Shandong Province[J].Jiangsu Agricultural Sciences,2013,41(11):141.
[8]尹辉,李晖,蒋忠诚,等.典型岩溶区土壤水分的空间异质性研究[J].江苏农业科学,2013,41(07):332.
 Yin Hui,et al.Study on spatial variability of soil water content in typical karst area[J].Jiangsu Agricultural Sciences,2013,41(11):332.
[9]覃怀德,吴炳孙,吴敏,等.橡胶园土壤钾素空间变异与分区管理技术——以海南省琼中县为例[J].江苏农业科学,2013,41(08):326.
 Qin Huaide,et al.Spatial variability and regionalized management of soil potassium nutrient in rubber plantation—Taking Qiongzhong County of Hainan Province as an example[J].Jiangsu Agricultural Sciences,2013,41(11):326.
[10]符勇,周忠发,王昆,等.基于贵州喀斯特高原山区的烟草种植适宜性研究[J].江苏农业科学,2014,42(09):92.
 Fu Yong,et al.Study on planting suitability of tobacco based on Guizhou karst mountain plateau[J].Jiangsu Agricultural Sciences,2014,42(11):92.

备注/Memo

备注/Memo:
收稿日期:2016-01-03
基金项目:国家自然科学基金(编号:41375149、41471191);江苏高校优势学科建设工程(编号:PAPD)。
作者简介:李秀芝(1990—),女,山东安丘人,硕士研究生,主要从事环境生态学研究。E-mail:33623371@qq.com。
通信作者:韩建刚,博士,教授,主要从事湿地环境过程研究。E-mail:hanjiangang76@126.com。
更新日期/Last Update: 2016-11-25