|本期目录/Table of Contents|

[1]王娟娟,刘玲玲,金婷,等.设施输液管道淤堵物的微生物铁还原特征[J].江苏农业科学,2016,44(12):509-513.
 Wang Juanjuan,et al.Investigation on microbial iron reduction characteristics of clogging deposits in facility pipelines[J].Jiangsu Agricultural Sciences,2016,44(12):509-513.
点击复制

设施输液管道淤堵物的微生物铁还原特征(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第44卷
期数:
2016年12期
页码:
509-513
栏目:
资源与环境
出版日期:
2016-12-25

文章信息/Info

Title:
Investigation on microbial iron reduction characteristics of clogging deposits in facility pipelines
作者:
王娟娟刘玲玲金婷杨静盛海君
扬州大学环境科学与工程学院,江苏扬州 225009
Author(s):
Wang Juanjuanet al
关键词:
微生物铁还原设施管道淤堵物
Keywords:
-
分类号:
S182
DOI:
-
文献标志码:
A
摘要:
结合理化分析、矿物分析与微生物方法,研究水肥一体化设施管道淤积物样品铁还原潜势及对铁氧化物存在的影响。结果表明,样点FS1与样点FS2的水样均为弱酸性,接近6,而样点FS1的含铁量与铁还原潜势均高于样点FS2;添加外源有机碳源对样品的三价铁还原速率有促进作用,其中以乳酸促进作用最为明显,甲酸对体系的铁还原速率的促进作用则较小。不同样品对有机碳源的反应有差异,可能与微生物组成及铁氧化物成分不同有关。外加碳源培养后,与铁还原有关的微生物明显富集,以地杆菌属(Geobacter sp.)、脱硫芽孢弯曲菌属(Dsulfosporosinus sp.)及脱亚硫酸菌属(Desulfitobacterium)为代表。由结果可知,可以通过调节管道的氧化还原状态及选择有机碳源种类,加速氧化铁的还原溶解,从而缓解管道淤堵。
Abstract:
-

参考文献/References:

[1]Hedrich S,Schloemann M,Johnson D B.The iron-oxidizing proteobacteria[J]. Microbiology,2011,157:1551-1564.
[2]张莎莎,沈晨,刘兰兰,等. 附着微生物黄铁矾回流对不同温度酸性硫酸盐体系亚铁氧化及总铁沉淀的强化效果[J]. 环境科学学报,2016,36(2):513-520.
[3]陈娅婷,李芳柏,李晓敏. 水稻土嗜中性微好氧亚铁氧化菌多样性及微生物成矿研究[J]. 生态环境学报,2016,25(4):547-554.
[4]Houben G J. Iron oxide incrustations in wells. Part 1:Genesis,mineralogy and geochemistry[J]. Applied Geochemistry,2003,18(6):927-939.
[5]胡敏,李芳柏. 土壤微生物铁循环及其环境意义[J]. 土壤学报,2014(4):683-698.
[6]李俊,谢丽,盛杰,等. Fe(Ⅱ)/铁氧化物表面结合铁系统还原有机污染物的研究进展[J]. 地球科学进展,2009,24(1):25-32.
[7]李弘,种云霄,余光伟,等. 典型富氧化铁土壤基质中铁异化还原的特性[J/OL]. 环境科学学报.[2016-08-30].http://www.cnki.net/kcms/detail/11.1843.X.20160513.0815.001.html.
[8]Lovley D R. Dissimilatory Fe(Ⅲ) and Mn(Ⅳ) reduction[J]. Microbiol Rev,1991,55(2):259-287.
[9]Lovley D R. Dissimilatory Fe(Ⅲ) and Mn(Ⅳ)reducing prokaryotes[J]. Prokaryotes,2000(3):635-658
[10]Weber K A,Achenbach L A,Coates J D. Microorganisms pumping iron:anaerobic microbial iron oxidation and reduction[J]. Nature Reviews Microbiology,2006,4(10):752-764.
[11]王亚娥,冯娟娟,李杰,等. 不同Fe(Ⅲ)对活性污泥异化铁还原耦合脱氮的影响及机理初探[J]. 环境科学学报,2014,34(2):377-384.
[12]王亚洁,朱永官,孙国新,等. 铁还原菌Shewanella oneidensis MR-1 对根表铁膜中砷运移的影响[J]. 环境科学学报,2015,35(7):2240-2246.
[13]罗光俊,何天容,尹德良,等. 贵阳市湖泊沉积物中铁还原菌的季节分布[J]. 生态学杂志,2014,33(8):2153-2160.
[14]司友斌,王娟. 异化铁还原对土壤中重金属形态转化及其有效性影响[J]. 环境科学,2015,36(9):3533-3542.
[15]Lovley D R,Stolz J F,Nord G L,et al. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism[J]. Nature,1987,330(6145):252-254.
[16]Ralph D E,Stevenson J M. The role of bacteria in well clogging[J]. Water Research,1995,29(1):365-369.
[17]Steenbergh A K,Meima M M,Kamst M,et al. Biphasic kinetics of a methanotrophic community is a combination of growth and increased activity per cell[J]. FEMS Microbiol Ecol,2010,71(1):12-22.
[18]Sung W,Morgan J J. Kinetics and product of ferrous ironoxygenation in aqueous systems[J]. Environ Sci Technol,1980,9(12):561-568.
[19]Fortin D,Langley S. Formation and occurrence of biogenic iron-rich minerals[J]. Earth-Science Reviews,2005,72(1):1-19.
[20]Straub K L,Benz M,Schink B. Iron metabolism in anoxic environments at near neutral pH[J]. Fems Microbiology Ecology,2001,34(3):181-186.
[21]Coupland K,Johnson D B. Evidence that the potential for dissimilatory ferric iron reduction is widespread among acidophilic heterotrophic bacteria[J]. Fems Microbiology Letter,2008,279(1):30-35.
[22]吴超,曲东,刘浩. 初始pH值对碱性和酸性水稻土微生物铁还原过程的影响[J]. 生态学报,2014,34(4):933-942.

相似文献/References:

[1]李媛媛,张怡康.徐州采煤塌陷区复垦土壤的细菌群落多样性[J].江苏农业科学,2014,42(09):312.
 Li Yuanyuan,et al.Bacterial community diversity of reclaimed soil in coal-mining subsidence area of Xuzhou[J].Jiangsu Agricultural Sciences,2014,42(12):312.
[2]宋景华,李谷,张世羊,等.循环水养殖池塘微生物群落的碳源代谢特性和功能多样性[J].江苏农业科学,2013,41(09):305.
 Song Jinghua,et al.Carbon metabolic properties and functional diversity of microbial communities in recirculating aquaculture ponds[J].Jiangsu Agricultural Sciences,2013,41(12):305.
[3]汤鸣强,吴凤林,姚源琼.喷施宝叶面肥对农药胁迫下土壤中常见微生物生长的影响[J].江苏农业科学,2013,41(11):361.
 Tang Mingqiang,et al.Effect of foliar fertilizer Penshibao on growth of common microorganisms in soils under pesticides stress[J].Jiangsu Agricultural Sciences,2013,41(12):361.
[4]高岳.应用宏基因组技术从微生物中获得活性物质的研究进展[J].江苏农业科学,2014,42(01):5.
 Gao Yue.Research progress of application of metagenomic approaches in discovery of active material[J].Jiangsu Agricultural Sciences,2014,42(12):5.
[5]杨志红,田前进,吴诗谣,等.芦竹对富营养化水体中磷及微生物的影响[J].江苏农业科学,2014,42(01):297.
 Yang Zhihong,et al.Effects of Arundo donax L. on phosphorus pollution and microorganisms in eutrophic water[J].Jiangsu Agricultural Sciences,2014,42(12):297.
[6]黄宜,刘振民,莫蓓红,等.干酪中微生物的研究进展[J].江苏农业科学,2016,44(05):359.
 Huang Yi,et al.Research progress on cheese microbiology[J].Jiangsu Agricultural Sciences,2016,44(12):359.
[7]侯少锋,李荣玉,尹显慧,等.精异丙甲草胺胁迫下烟草根际土壤微生物的动态响应及其降解[J].江苏农业科学,2016,44(06):493.
 Hou Shaofeng,et al.Dynamic responses and degradation of microorganisms in rhizospher soil under S-metolachlor stress[J].Jiangsu Agricultural Sciences,2016,44(12):493.
[8]李劭彤,李朝阳,李巧玲,等.甲氰菊酯微生物降解的研究进展[J].江苏农业科学,2015,43(11):17.
 Li Shaotong,et al.Pesearch progress on microbial degradation of fenpropathrin[J].Jiangsu Agricultural Sciences,2015,43(12):17.
[9]谢利,王燕芳,马超,等.棉花-孜然间作模式对土壤微生物数量及酶活性的影响[J].江苏农业科学,2015,43(10):103.
 Xie Li,et al.Effects of cotton and cumin intercropping pattern on soil microorganisms and enzyme activity[J].Jiangsu Agricultural Sciences,2015,43(12):103.
[10]李依韦,银 玲.黄瓜连作对土壤中微生物种群及酶活性的影响[J].江苏农业科学,2015,43(07):150.
 Li Yiwei,et al.Effect of successive cucumber cropping on microbial population and enzyme activity in soil[J].Jiangsu Agricultural Sciences,2015,43(12):150.

备注/Memo

备注/Memo:
收稿日期:2016-09-13
基金项目:江苏省自然科学基金(编号:BK20160468)。
作者简介:王娟娟(1979—),女,江苏泗洪人,博士,讲师,主要从事农业微生物资源利用研究。E-mail:wangjuanjuan@yzu.edu.cn。
通信作者:盛海君,硕士,高级农艺师,主要从事环境科学研究。E-mail:hjsheng@yzu.edu.cn。
更新日期/Last Update: 2016-12-25