|本期目录/Table of Contents|

[1]赵婉婉,郭丽芸,吴伟.水生植物根系生态化学特性及其生态响应研究进展[J].江苏农业科学,2017,45(03):231-236.
 Zhao Wanwan,et al.Research progress of chemical properties and ecological response of aquatic plants roots[J].Jiangsu Agricultural Sciences,2017,45(03):231-236.
点击复制

水生植物根系生态化学特性及其生态响应研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第45卷
期数:
2017年03期
页码:
231-236
栏目:
资源与环境
出版日期:
2017-02-05

文章信息/Info

Title:
Research progress of chemical properties and ecological response of aquatic plants roots
作者:
赵婉婉1 郭丽芸2 吴伟13
1.南京农业大学无锡渔业学院,江苏无锡 214081; 2.南京市水产科学研究所,江苏南京 210036;
3.中国水产科学研究院淡水渔业研究中心/中国水产科学研究院长江中下游渔业生态环境评价与资源养护重点实验室,江苏无锡 214081
Author(s):
Zhao Wanwanet al
关键词:
生态浮床根系化学特性生态响应
Keywords:
-
分类号:
X171
DOI:
-
文献标志码:
A
摘要:
植物生态浮床技术具有原位修复环境效果好、运行成本低、操作方便等特点,已成为当前水产养殖水体净化的主要技术之一,给水产养殖业带来了显著效益。浮床植物根系构建了具有巨大表面积的生物膜,导致不同种类的微生物群落在根系着生,对净化水体起重要作用。本文阐述了浮床植物根系的生理生态化学特性,植物根际周围微生物群落的形成、分布状况,根系与根系分泌物间的相互关系,根系泌氧状况以及产生的一系列生态响应,并对未来浮床植物根系的研究方向进行了展望,以便为研究浮床植物的净化机制提供理论依据。
Abstract:
-

参考文献/References:

[1]陈宪春. 水生生态和鱼虾病害之因果关系及药物防治中应注意的有关问题[J]. 现代渔业信息,1992,7(6):19-22.
[2]房英春,刘广纯,田春. 养殖水体污染对养殖生物的影响及水体的修复[J]. 中国水产,2005(4):78-80.
[3]Lynch J P. Root architecture and pant productivity[J]. Plant Physiology,1995,109(1):7-13.
[4]Hiltner L. Uber neure erfahrungen und probleme auf dem gebeit der bodenbackteriologie und unter besonderer berucksichtigung der grundungung und brache[J]. Arb Deut Landwirsch Ges,1904,98:59-78.
[5]陈红,冯云,周建梅,等. 植物根系生物学研究进展[J]. 世界林业研究,2013,26(5):25-29.
[6]张超. 黄土丘陵区根际微生物对退耕地植被恢复的响应[D]. 北京:中国科学院大学,2013.
[7]嵇庆才,周明耀,张凤翔,等. 水肥耦合条件下水稻根系形态及其活力研究[C]. 中国农业工程学会2005年学术年会论文集,2005:230.
[8]Marschener H. Role of root growth,arbuscular mycorrhiza,and root exudates for the efficiency in nutrient acquisition[J]. Field Crops Research,1998,56(1/2):203-207.
[9]Ingram K T,Bueno F D,Namuco O S,et al. Rice root traits for drought resistance and their genetic variation[M]//Kirk G J D. Rice root:nutrient and water use. Manila:International Rice Research Institute,1994:66-77.
[10]Dong B,Rengel Z,Graham R D. Root morphology of wheat genotypes differing in zinc efficiency[J]. Journal of Plant Nutrition,1995,18(12):2761-2773.
[11]Gross K L,Peters A,Pregitzer K S. Fine root growth and demographic responses to nutrient patches in four old-field plant species[J]. Oecologia,1993,95(1):61-64.
[12]张淑香,高子勤. 连作障碍与根际微生态研究Ⅱ. 根系分泌物与酚酸物质[J]. 应用生态学报,2000,11(1):152-156.
[13]Hoftland E,Findeneg G R,Nelemands J A. Solubilization of rock phosphate by rape.Ⅱ. Local root exudation of organic acids as a response to P-starvation[J]. Plant and Soil,1989,113(2):161-165.
[14]周明,涂书新,孙锦荷,等. 富钾植物籽粒苋(Amaranthus spp.)对土壤矿物钾的吸收利用研究[J]. 核农学报,2005,19(4):291-296.
[15]Pinto A P,Simoes I,Mota A M. Cadmium impact on root exudates of sorghum and maize plants:a speciation study[J]. Journal of Plant Nutrition,2008,31(10):1746-1755.
[16]Stermitz F,Bais H,Foderaro T,et al. 7,8-Benzoflavone:a phytotoxin from root exudates of invasive Russian knapweed[J]. Phytochemistry,2003,64(2):493-497.
[17]Abenavoli M,Cacco G,Sorgonà A,et al. The inhibitory effects of coumarin on the germination of durum wheat (Triticum turgidum ssp. durum,cv. Simeto) seeds[J]. Journal of Chemical Ecology,2006,32(2):489-506.
[18]Nakano H,Morita S,Shigemori H,et al. Plant growth inhibitory compounds from aqueous leachate of wheat straw[J]. Plant Growth Regulation,2006,48(3):215-219.
[19]Warembourg F R,Billes G. Estimating carbon transfers in the plant rhizosphere[C]//Harley J L,Russell R S.The soil root interface. London:Academic Press,1979:183-194.
[20]Rovira A D,Foster R C,Martin J K. Origin,nature and nomenclature of the organic material in the rhizosphere[C]//Harley J L,Russell R S.The soil root interface. London:Academic Press,1979:1-4.
[21]张福锁. 根系分泌物及其在植物营养中的作用[J]. 北京农业大学学报,1992,18(4):353-356.
[22]张福锁. 环境胁迫与植物根际营养[M]. 北京:中国农业出版社,1998:1-11.
[23]张豆豆,梁新华,王俊. 植物根际分泌物研究综述[J]. 中国农学通报,2014,30(35):314-320.
[24]项学敏,宋春霞,李彦生,等. 湿地植物芦苇和香蒲根际微生物特性研究[J]. 环境保护科学,2004,30(4):35-38.
[25]Neralla S,Weaver R W,Lesikar B J,et al. Improvement of domestic waste-water quality by subsurface flow constructed wetland[J]. Bioresource Technology,2000,75(1):19-25.
[26]唐莹莹,李秀珍,周元清,等. 浮床空心菜对氮循环细菌数量与分布和氮素净化效果的影响[J]. 生态学报,2012,32(9):2837-2846.
[27]常会庆,丁学峰,蔡景波. 水生植物分泌物对微生物影响的研究[J]. 水土保持研究,2007,14(4):57-60.
[28]何欢,王占武,胡栋,等. 根系分泌物与根际微生物互作的研究进展[J]. 河北农业科学,2011,15(3):69-73.
[29]赵庆杰. 种植不同植物的人工湿地土壤微生物群落研究[J]. 上海交通大学学报(农业科学版),2011,29(3):47-52.
[30]黄娟,王世和,钟秋霜,等. 植物生理生态特性对人工湿地脱氮效果的影响[J]. 生态环境学报,2009,18(2):471-475.
[31]Armstrong W. Aeration in higher plants[J]. Advances in Botanical Research,1979(22):225-32.
[32]Jaynes M L,Carpenter S R. Effects of vascular and nonvascular macrophytes on sedi-ment redox and solute dynamics[J]. Ecology,1986,67(4):875-882.
[33]Armstrong J,Armstrong W,Beckett P M. Phragmites australis:venturi and humidity-induced pressure flows enhance rhizome aeration and rhizosphere oxidation[J]. New Phytologist,1992,120(2):197-207.
[34]Brix H. Treatment of waste-water in the rhizosphere of wetland plants:the root-zone method[J]. Water Science and Technology,1987,19(7):107-118.
[35]Colmer T D. Long-distance transport of gases in plants:a perspective on internal aeration and radial oxygen loss from roots[J]. Plant Cell and Environment,2003,26(1):17-36.
[36]Visser E W,Colmer T D,Blom C M. Changes in growth,porosity,and radial oxygen loss from adventitious roots of selected mon and dicotyledonous wetland species with contrasting types of aerenchyma[J]. Plant Cell and Environment,2000,23(11):1237-1245.
[37]Armstrong J,Armstrong W. Rice:sulfide-induced barriers to root radial oxygen loss,Fe2+ and water uptake,and lateral root emergence[J]. Annals of Botany,2005,96(4):625-638.
[38]章永松,林咸永,罗安程. 水稻根系泌氧对水稻土磷素化学行为的影响[J]. 中国水稻科学,2000,14(4):208-212.
[39]Kirk G J D,Bajita J B. Root-induced iron oxidation,pH changes and zinc solubilisation in the rhizosphere of lowland rice[J]. New Phytologist,1995,131(1):129-137.
[40]Kirk G J D. Plant-mediated processess to acquire nutrients:nitrogen uptake by rice plants[J]. Plant and Soil,2001,232(1/2):129-134.
[41]邓泓,叶志鸿,黄铭洪. 湿地植物根系泌氧的特征[J]. 华东师范大学学报(自然科学版),2007(6):69-76.
[42]Lai W,Wang S,Peng C,et al. Root features related to plant growth and nutrient removal of 35 wetland plants[J]. Water Research,2011,45(13):3941-3950.
[43]Mei X,Yang Y,Tam N,et al. Roles of root porosity,radial oxygen loss,Fe plaque formation on nutrient removal and tolerance of wetland plants to domestic wastewater[J]. Water Research,2014,50(3):147-159.
[44]范子红,刘超翔. 溶氧条件对美人蕉和风车草根系泌氧特征的影响[J]. 城市环境与城市生态,2011,24(6):14-17.
[45]刘永,杨俊兴,皮娜,等. 三种不同泌氧能力的红树植物对铅、锌、铜的耐性研究[J]. 生态科学,2008,27(5):433-435.
[46]Armstrong W. The oxidising activity of roots in water-logged soils[J]. Physiol Plant,1967,20(4):920-926.
[47]Chen C C,Dixon J B,Turner F T. Iron coatings on rice roots:morphology and models of development[J]. Soil Sci Soc Am,1980,44(5):1113-1119.
[48]Crowder A A,Coltman D W. Formation of manganese oxide plaque on rice roots in solution culture under varying pH and manganese (Mn2+) concentration conditions[J]. Journal of Plant Nutrition,1993,16(4):589-599.
[49]Mendelssohn I A,Kleiss B A,Wakeley J S. Factors controlling the formation of oxidized root channels:a review[J]. Wetlands,1995,15(1):37-46.
[50]张西科,尹君,刘文菊,等. 根系氧化力不同的水稻品种磷锌营养状况的研究[J]. 植物营养与肥料学报,2002,8(1):54-57.
[51]蔡妙珍,罗安程,章永松,等. 水稻根表铁膜对磷的富集作用及其与水稻磷吸收的关系[J]. 中国水稻科学,2003,17(2):187-190.
[52]宋祥甫,邹国燕,吴伟明,等. 浮床水稻对富营养化水体中氮,磷的去除效果及规律研究[J]. 环境科学学报,1998,18(5):489-494.
[53]Liang Y,Zhu Y G,Xia Y,et al. Iron plaque enhances phosphorus uptake by rice (Oryza sativa) growing under varying phosphorus and iron concentrations[J]. Annals of Applied Biology,2006,149(3):305-312.
[54]Hossain M B,Jahiruddin M,Loeppert R H,et al. The effects of iron plaque and phosphorus on yield and arsenic accumulation in rice[J]. Plant and Soil,2009,317(1/2):167-176.
[55]Jiang F Y,Chen X,Luo A C. Iron plaque formation on wetland plants and its influence on phosphorus,calcium and metal uptake[J]. Aquatic Ecology,2009,43(4):879-890.
[56]Zhang X K,Zhang F S,Mao D R. Effect of iron plaque outside roots on nutrient uptake by rice (Oryza sativa L.):Zinc uptake by Fe deficient rice[J]. Plant and Soil,1998,202(1):33-39.
[57]Otte M L,Rozema J,Koster L,et al. Iron plaque on roots of Aster-tripolium L.-interaction with zinc uptak[J]. New Phytologist,1989,111(2):309-317.
[58]Otte M L,Dekkers M J,Rozema J,et al. Uptake of arsenic by Astertripolium in relation to rhizosphere oxidation[J]. Canadian Journal of Botany,1991,69(12):2670-2677.
[59]吕世华,张西科,张福锁,等. 根表铁、锰氧化物胶膜在磷不同浓度下对水稻磷吸收的影响[J]. 西南农业学报,1999,12(增刊1):7-12.
[60]Ye Z H,Baker A M,Wong M H,et al. Copper and nickel uptake,accumulation and tolerance in Typha latifolia with and without iron plaque on the root surface[J]. New Phytologist,1997,136(3):481-488.
[61]刘婧,陈昕,罗安程,等. 湿地植物根表铁膜在污水磷去除中的作用[J]. 浙江大学学报,2011,37(2):224-230.
[62]曾祥忠,吕世华,刘文菊,等. 根表铁、锰氧化物胶膜对水稻铁、锰和磷、锌营养的影响[J]. 西南农业学报,2001,14(4):34-38.
[63]Christensen K K,Wigand C. Formation of root plaques and their influence on tissue phosphorus content in Lobelia dortmanna[J]. Aquatic Botany,1998,61(2):111-122.
[64]Zhang X K,Zhang F S,Mao D R. Effect of iron plaque outside roots on nutrient uptake by rice(Oryza sativa L.):phosphorus uptake[J]. Plant and Soil,1999,209(2):187-192.
[65]鲁安怀,卢晓英,任子平,等. 天然铁锰氧化物及氢氧化物环境矿物学研究[J]. 地学前缘,2000,7(2):473-483.
[66]汤艳杰,贾建业,谢先德. 铁锰氧化物在污染土壤修复中的作用[J]. 地球科学进展,2002,7(4):557-564.
[67]Von B B,Bauer W D,Coplin D L. Quorum sensing in plant-pathogenic bacteria [J]. Annual Review of Phytopathology,2003,41(1):455-482.

相似文献/References:

[1]崔雪梅,简君萌,李春生.铝胁迫对油菜根系及叶片生理生化指标的影响[J].江苏农业科学,2015,43(12):107.
 Cui Xuemei,et al.Effects of aluminum stress on physiological and biochemical indices of rapeseed roots and leaves[J].Jiangsu Agricultural Sciences,2015,43(03):107.
[2]孟佳丽,王夏雯,余翔,等.不同生根剂处理对水培密叶朱蕉根系的影响[J].江苏农业科学,2014,42(01):142.
 Meng Jiali,et al.Effect of rooting agent on roots of hydroponic Dracaena deremensis cv. Compacta[J].Jiangsu Agricultural Sciences,2014,42(03):142.
[3]孙凯文,时佩佩,陆叶峰,等.添加碳调节剂对次盐渍化土壤水溶性盐含量及白菜根系生长的影响[J].江苏农业科学,2016,44(05):241.
 Sun Kaiwen,et al.Effects of adding carbon regulator on water soluble salt content of secondary salinization soil and growth of Chinese cabbage roots[J].Jiangsu Agricultural Sciences,2016,44(03):241.
[4]孙鹏,崔康平,许为义,等.3种浮床植物对污染水体水质改善性能研究[J].江苏农业科学,2016,44(05):475.
 Sun Peng,et al.Study on water quality improvement capacity of three plant types cultivated on floating-bed[J].Jiangsu Agricultural Sciences,2016,44(03):475.
[5]蔡凤香,陈豆豆,杨飞,等.镉锌互作条件下ABA 对水稻幼苗根系生长和生长素分布的影响[J].江苏农业科学,2016,44(06):114.
 Cai Fengxiang,et al.Effects of ABA on growth of rice seedling roots and distribution of auxin under condition of cadmium and zinc interactions[J].Jiangsu Agricultural Sciences,2016,44(03):114.
[6]杨世佳,潘中涛,陈瑾,等.黔中山区不同覆膜方式对土壤水温、玉米根系及产量的影响[J].江苏农业科学,2016,44(01):119.
 Yang Shijia,et al.Effects of different plastic-film mulching techniques on moisture and temperature of soil and root system and yield of maize in mountainous area of central Guizhou[J].Jiangsu Agricultural Sciences,2016,44(03):119.
[7]高璐阳,房增国.不同施氮水平对甘薯生长前期根系生物学特性的影响[J].江苏农业科学,2015,43(10):122.
 Gao Luyang,et al.Effect of different nitrogen levels on biological characteristics of sweet potato root system at early growth stage[J].Jiangsu Agricultural Sciences,2015,43(03):122.
[8]王利芬,赵雪阳,朱军贞.枇杷幼苗的水培技术[J].江苏农业科学,2015,43(08):155.
 Wang Lifen,et al.Hydroponics techniques of loquat seedling[J].Jiangsu Agricultural Sciences,2015,43(03):155.
[9]王会广,闫洪奎.缺钾处理对玉米自交系各部位钾含量的影响[J].江苏农业科学,2015,43(08):68.
 Wang Huiguang,et al.Effect of potassium deficiency treatment on potassium content in different parts of maize inbred lines[J].Jiangsu Agricultural Sciences,2015,43(03):68.
[10]周之栋,黄华,薛建辉.模拟酸雨对水葫芦根部H+、NH+4、NO-3通量的影响[J].江苏农业科学,2015,43(06):338.
 Zhou Zhidong,et al.Effects of simulated acid rain on flux of H+、NH+4、NO-3 in roots of water hyacinth[J].Jiangsu Agricultural Sciences,2015,43(03):338.

备注/Memo

备注/Memo:
收稿日期:2016-04-25
基金项目:江苏省南京市生态循环农业项目(编号:NNC2015138)。
作者简介:赵婉婉(1993—),女,河南周口人,硕士研究生,研究方向为污染生态学及环境生物学。E-mail:wanwan1170232873@qq.com。
通信作者:吴伟,研究员,主要从事污染生态学及环境生物学研究。Tel:(0510)85559935;E-mail:wuw@ffrc.cn。
更新日期/Last Update: 2017-02-05