|本期目录/Table of Contents|

[1]曹薇,杨志民,庄黎丽,等.高羊茅FaHsfC1b启动子克隆及外源激素处理下FaHsfC1b的表达分析[J].江苏农业科学,2018,46(03):38-44.
 Cao Wei,et al.Cloning of FaHsfC1b promoter and its qRT-PCR analysis under different phytohormone treatment in Festuca arundinacea[J].Jiangsu Agricultural Sciences,2018,46(03):38-44.
点击复制

高羊茅FaHsfC1b启动子克隆及外源
激素处理下FaHsfC1b
的表达分析
(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第46卷
期数:
2018年03期
页码:
38-44
栏目:
生物技术
出版日期:
2018-02-05

文章信息/Info

Title:
Cloning of FaHsfC1b promoter and its qRT-PCR analysis under different phytohormone treatment in Festuca arundinacea
作者:
曹薇 杨志民 庄黎丽 王剑 孙岩
南京农业大学草业学院,江苏南京 210095
Author(s):
Cao Weiet al
关键词:
高羊茅FaHsfC1b基因启动子序列分析激素处理基因表达
Keywords:
-
分类号:
S688.401
DOI:
-
文献标志码:
A
摘要:
从高羊茅品种凌志中克隆得到FaHsfC1b启动子序列1 657 bp。通过生物信息学分析软件对其顺式作用元件进行了初步分析,结果显示启动子序列中不仅包含启动子必备的核心元件:多个TATA-box以及多个CAAT-box,还包含多种防御胁迫元件(冷、盐、干旱、病虫害相关元件)、激素响应元件、光信号元件、组织特异性元件、特殊物质响应元件等。根据启动子中激素响应元件,使用外源激素ABA(100 μmol/L)、GA(90 mg/L)、IAA(60 mg/L)、SA(0.5 mmol/L)、ZT(0.5 mg/L)处理高羊茅,在24 h内FaHsfC1b表达量都有上调。推测该启动子序列调控FaHsfC1b表达并通过激素介导对高羊茅抗逆性产生影响。
Abstract:
-

参考文献/References:

[1]黄小云,陶鹏,李必元,等. 植物热激转录因子基因家族的研究进展[J]. 浙江农业科学,2014(9):1323-1332,1336.
[2]Chen H,Hwang J E,Lim C J,et al. Arabidopsis DREB2C functions as a transcriptional activator of HsfA3 during the heat stress response[J]. Biochemical and Biophysical Research Communications,2010,401(2):238-244.
[3]Czarneckaverner E,Yuan C X,Fox P C,et al. Isolation and characterization of six heat shock transcription factor cDNA clones from soybean[J]. Plant Molecular Biology,1995,29(1):37-51.
[4]Yokotani N,Ichikawa T,Kondou Y,et al. Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis[J]. Planta,2008,227(5):957-967.
[5]Bharti K,Koskull-Dring P V,Bharti S,et al. Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1[J]. The Plant Cell,2004,16(6):1521-1535.
[6]Scharf K D,Berberich T,Ebersberger I,et al. The plant heat stress transcription factor (Hsf) family: structure,function and evolution[J]. Biochimica et Biophysica Acta,2012,1819(2):104-119.
[7]Hu W,Hu G,Han B. Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice[J]. Plant Science,2009,176(4):583-590.
[8]Xue G P,Sadat S,Drenth J,et al. The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes[J]. Journal of Experimental Botany,2014,65(2):539-557.
[9]Huang X Y,Tao P,Li B Y,Wang W H,et al. Genome-wide identification,classification,and analysis of heat shock transcription factor family in Chinese cabbage (Brassica rapa pekinensis)[J]. Genetics and Molecular Research,2015,14(1):2189-2204.
[10]Lin Q,Jiang Q,Lin J,et al. Heat shock transcription factors expression during fruit development and under hot air stress in Ponkan (Citrus reticulata Blanco cv. Ponkan) fruit[J]. Gene,2015,559(2):129-136.
[11]Huang Y,Li M Y,Wang F,et al. Heat shock factors in carrot: genome-wide identification,classification,and expression profiles response to abiotic stress[J]. Molecular Biology Reports,2015,42(5):893-905.
[12]Li P S,Yu T F,He G H,et al. Genome-wide analysis of the Hsf family in soybean and functional identification of GmHsf-34 involvement in drought and heat stresses[J]. BMC Genomics,2014,15:998-1009.
[13]Zhang J,Li Y,Jia H X,et al. The heat shock factor gene family in Salix suchowensis:a genome-wide survey and expression profiling during development and abiotic stresses[J]. Frontiers in Plant Science,2015,6:735-748.
[14]Schmidt R,Schippers J H,Welker A,et al. Transcription factor OsHsfC1b regulates salt tolerance and development in Oryza sativa ssp. japonica[J]. AoB Plants,2012,2012(1):11-23.
[15]伊淑莹,孙爱清,赵春梅,等. 番茄多胁迫诱导型LeMTshsp启动子的分子克隆及其功能分析[J]. 云南植物研究,2007,29(2):223-230.
[16]Freeman J,Sparks C A,West J,et al. Temporal and spatial control of transgene expression using a heat-inducible promoter in transgenic wheat[J]. Plant Biotechnology Journal,2011,9(7):775-788.
[17]孙芳芳,宋洪元. 植物诱导型启动子研究进展[J]. 南方园艺,2014(2):51-56.
[18]Yamaguchi-Shinozaki K,Shinozaki K. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters[J]. Trends in Plant Science,2005,10(2):88-94.
[19]Larkindale J,Huang B. Thermotolerance and antioxidant systems in Agrostis stolonifera:involvement of salicylic acid,abscisic acid,calcium,hydrogen peroxide,and ethylene[J]. Plant Physiology,2004,161(4):405-413.
[20]Liu N,Ko S,Yeh K C,et al. Isolation and characterization of tomato Hsa32 encoding a novel heat-shock protein[J]. Plant Science,2006,170(5):976-985.
[21]Larkindale J,Hall J D,Knight M R,et al. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance[J]. Plant Physiology,2005,138(2):882-897.
[22]Jin G H,Gho H J,Jung K H. A systematic view of rice heat shock transcription factor family using phylogenomic analysis[J]. Journal of Plant Physiology,2013,170(3):321-329.
[23]Sakata T,Oshino T,Miura S,et al. Auxins reverse plant male sterility caused by high temperatures[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(19):69-74.
[24]Sun T P,Gubler F. Molecular mechanism of gibberellin signaling in plants[J]. Annual Review of Plant Biology,2004,55(1):197-223.
[25]Fleet C M,Sun T P. A dellacate balance: the role of gibberellin in plant morphogenesis[J]. Current Opinion in Plant Biology,2005,8(1):77-85.
[26]Colebrook E H,Thomas S G,Phillips A L,et al. The role of gibberellin signalling in plant responses to abiotic stress[J]. Journal of Experimental Biology,2014,217(1):67-75.
[27]Branlard T. Proteomic analysis of the effect of heat stress on hexaploid wheat grain : characterization of heat-responsive proteins from non-prolamins[J]. Proteomics,2004,(4):505-513.
[28]Oshino T,Abiko M,Saito R,et al. Premature progression of anther early developmental programs accompanied by comprehensive alterations in transcription during high-temperature injury in barley plants[J]. Molecular Genetics and Genomics,2007,278(1):31-42.
[29]Vanstraelen M,Benková E. Hormonal interactions in the regulation of plant development[J]. Annual Review of Cell & Developmental Biology,2012,28(28):451-463.
[30]Hoagland D R,Arnon D I. The water-culture method for growing plants without soil[J]. Califagricexpstncirc,1937,347(5406):357-359.
[31]李广平,张长青,章镇,等. 中国李pgip启动子的克隆及调控元件分析[J]. 园艺学报,2009,36(10):1425-1430.
[32]Altschul S F,Madden T L,Schffer A A,et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs[J]. Nucleic Acids Research,1997,25(17):389-402.
[33]Lescot M,Déhais P,Thijs G,et al. PlantCARE,a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research,2002,30(1):325-327.
[34]Higo K,Ugawa Y,Iwamoto M,et al. Plant cis-acting regulatory DNA elements (PLACE) database[J]. Nucleic Acids Research,1999,27(1):297-300.
[35]Kilian J,Whitehead D,Horak J,et al. The AtGenExpress global stress expression data set: protocols,evaluation and model data analysis of UV‐B light,drought and cold stress responses[J]. Plant Journal,2007,50(2):347-363.
[36]Wang J,Sun N,Deng T,et al. Genome-wide cloning,identification,classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum)[J]. BMC Genomics,2014,15:955-961.
[37]Reddy P S,Kavi Kishor P B,Seiler C,et al. Unraveling regulation of the small heat shock proteins by the heat shock factor HvHsfB2c in barley: its implications in drought stress response and seed development[J]. PloS One,2014,9(3):119-125.
[38]Udo Gowik J B,Meryem A,Ute S,et al. cis-Regulatory elements for Mesophyll-Specific gene expression in the C4 plant flaveria trinervia,the promoter of the C4 phosphoenolpyruvate carboxylase gene[J]. The Plant Cell,2004,16(5):1077-1090.
[39]Bechtold U,Albihlal W S,Lawson T,et al. Arabidopsis HEAT SHOCK TRANSCRIPTION FACTORA1b overexpression enhances water productivity,resistance to drought,and infection[J]. Journal of Experimental Botany,2013,64(11):3467-3481.
[40]Nishiuchi T,Shinshi H,Suzuki K. Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves: possible involvement of NtWRKYs and autorepression[J]. Journal of Biological Chemistry,2005,279(53):355-361.
[41]Liu Z B,Hagen G,Guilfoyle T J. A G-Box-Binding protein from soybean binds to the E1 auxin-response element in the soybean GH3 promoter and contains a proline-rich repression domain[J],Plant Physiology,1997,115(2):397-407.

相似文献/References:

[1]王宁,冯梦迪,袁美丽,等.苦苣菜茎叶水浸提液对3种草坪植物种子萌发和幼苗生长的化感作用[J].江苏农业科学,2016,44(01):163.
 Wang Ning,et al.Allelopathic effects of Sonchus oleraceus L. on seed germination and seedling growth of three turf grass species[J].Jiangsu Agricultural Sciences,2016,44(03):163.
[2]岳鹏鹏,纪晓玲,张静,等.保水剂对高羊茅种子萌发的影响[J].江苏农业科学,2014,42(04):144.
 Yue Pengpeng,et al.Effect of water retaining agent on seed germination of tall fescue[J].Jiangsu Agricultural Sciences,2014,42(03):144.
[3]陈水红,崔小杰,张剑云.盐胁迫下内生真菌感染对高羊茅生理指标和产量的影响[J].江苏农业科学,2015,43(05):187.
 Chen Shuihong,et al.Effects of endophytic fungi infection on physiological indices and yield of tall fescue under salt stress[J].Jiangsu Agricultural Sciences,2015,43(03):187.
[4]何访淋,包国章,陈薇薇,等.醋酸钙镁盐环保融雪剂及冻融胁迫对高羊茅幼苗的生理影响[J].江苏农业科学,2019,47(05):125.
 He Fanglin,et al.Physiological characteristics of Festuca elata seedlings in response to environment-friendly calcium magnesium acetate (CMA)deicing salt and freezing-thawing stress[J].Jiangsu Agricultural Sciences,2019,47(03):125.
[5]张海娜,鲁向晖,王瑞峰,等.稀土尾砂干旱胁迫对2种牧草种子萌发与幼苗生理特性的影响[J].江苏农业科学,2019,47(13):204.
 Zhang Haina,et al.Effects of rare earth milltailings drought stress on seed germination and seedling physiological characteristics of Lolium perenne and Festuca elata[J].Jiangsu Agricultural Sciences,2019,47(03):204.
[6]聂文军,谭策,解琳,等.重金属胁迫下乙二胺二琥珀酸对植物生长的影响[J].江苏农业科学,2020,48(07):260.
 Nie Wenjun,et al.Effects of ethylene diamino-disuccinic acid(EDDS) on resistant plants physiology under heavy metals stress[J].Jiangsu Agricultural Sciences,2020,48(03):260.

备注/Memo

备注/Memo:
收稿日期:2017-05-31
基金项目:国家自然科学基金面上项目(编号:31672480)。
作者简介:曹薇(1991—),女,山西临汾人,硕士研究生,主要从事草坪草分子生物学育种研究。E-mail:baihe.909@foxmail.com。
通信作者:杨志民,教授,主要从事草坪草生理与分子生物学育种研究。Tel:(025)84399712;E-mail:nauyzm@njau.edu.cn。
更新日期/Last Update: 2018-02-05