|本期目录/Table of Contents|

[1]张莹,陈光才,刘泓.纳米颗粒的土壤环境行为及其生态毒性研究进展[J].江苏农业科学,2018,46(13):8-12.
 Zhang Ying,et al.Research progress on soil environmental behavior and ecological toxicity of nanoparticles[J].Jiangsu Agricultural Sciences,2018,46(13):8-12.
点击复制

纳米颗粒的土壤环境行为及其生态毒性研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第46卷
期数:
2018年第13期
页码:
8-12
栏目:
专论与综述
出版日期:
2018-07-05

文章信息/Info

Title:
Research progress on soil environmental behavior and ecological toxicity of nanoparticles
作者:
张莹12 陈光才2 刘泓1
1.福建农林大学资源与环境学院,福建福州 350002; 2.中国林业科学研究院亚热带林业研究所,浙江杭州 311400
Author(s):
Zhang Yinget al
关键词:
纳米颗粒土壤土壤微生物植物营养转移研究进展
Keywords:
-
分类号:
X131.3
DOI:
-
文献标志码:
A
摘要:
随着纳米科技的快速发展以及纳米产品的大量普及,纳米颗粒的土壤环境行为及其生态毒性逐渐成为国内外研究学者关注的热点。本文综述了近几年来纳米颗粒在土壤中的环境行为及生态毒性等方面的研究进展,揭示了纳米颗粒对土壤微生物的影响方式、对植物的致毒机制以及在食物链中的营养转移状况。本文将土壤、土壤微生物、植物、动物作为整体,系统地分析了纳米颗粒在环境中的迁移与变化状况及其对植物的致毒机制,并对此作出了分析和总结,指出未来纳米颗粒的研究方向。
Abstract:
-

参考文献/References:

[1]杨新萍,赵方杰. 植物对纳米颗粒的吸收、转运及毒性效应[J]. 环境科学,2013,34(11):4495-4502.
[2]Nel A,Xia T,Mdler L,et al. Toxic potential of materials at the nanolevel[J]. Science,2006,311(5761):622-627.
[3]Zhao J,Wang Z,Dai Y,et al. Mitigation of CuO nanoparticle-induced bacterial membrane damage by dissolved organic matter[J]. Water Research,2013,47(12):4169-4178.
[4]Ramsden C S,Henry T B,Handy R D. Sub-lethal effects of titanium dioxide nanoparticles on the physiology and reproduction of zebrafish[J]. Aquatic Toxicology,2013,126(10):404-413.
[5]Mueller N C,Nowack B. Exposure modeling of engineered nanoparticles in the environment[J]. Environmental Science & technology,2008,42(12):4447-4453.
[6]Fang J,Shan X Q,Wen B,et al. Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns[J]. Environmental Pollution,2009,157(4):1101-1109.
[7]Ghosh S,Mashayekhi H,Pan B,et al. Colloidal behavior of aluminum oxide nanoparticles as affected by pH and natural organic matter[J]. Langmuir,2008,24(21):12385-12391.
[8]Ben-Moshe T,Dror I,Berkowitz B. Transport of metal oxide nanoparticles in saturated porous media[J]. Chemosphere,2010,81(3):387-393.
[9]Unrine J,Bertsch P,Hunyadi S. Bioavailability,trophic transfer,and toxicity of manufactured metal and metal oxide nanoparticles in terrestrial environments[M]. John Wiley & Sons Inc,2008:345-366.
[10]Chen R,Ratnikova T A,Stone M B,et al. Differential uptake of carbon nanoparticles by plant and mammalian cells[J]. Small,2010,6(5):612-617.
[11]Ma X M,Wang C. Fullerene nanoparticles affect the fate and uptake of trichloroethylene in phytoremediation systems[J]. Environmental Engineering Science,2010,27(11):989-992.
[12]Wang Z,Li J,Zhao J,et al. Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter[J]. Environmental Science & Technology,2011,45(14):6032-6040.
[13]孟萍. 土壤环境中西兰花对金属纳米颗粒物敏感性研究[D]. 哈尔滨:哈尔滨工业大学,2015.
[14]Du W,Sun Y,Ji R,et al. TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil[J]. Journal of Environmental Monitoring,2011,13(4):822-828.
[15]Jos'ko I,Oleszczuk P,Futa B. The effect of inorganic nanoparticles (ZnO,Cr2O3,CuO and Ni) and their bulk counterparts on enzyme activities in different soils[J]. Geoderma,2014,232/233/234:528-537.
[16]Cullen LG,Tilston EL,Mitchell GR,et al. Assessing the impact of nano- and micro-scale zerovalent iron particles on soil microbial activities:particle reactivity interferes with assay conditions and interpretation of genuine microbial effects[J]. Chemosphere,2011,82(11):1675-1682.
[17]Kim S,Kim J,Lee I. Effects of Zn and ZnO nanoparticles and Zn2+on soil enzyme activity and bioaccumulation of Zn inCucumis sativus[J]. Chemistry and Ecology,2011,27(1):49-55.
[18]Kumar N,Shah V,Walker V K. Perturbation of an arctic soil microbial community by metal nanoparticles[J]. Journal of Hazardous Materials,2011,190(1/2/3):816-822.
[19]Ge Y,Schimel J P,Holden P A. Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities[J]. Environmental Science & Technology,2011,45(4):1659-1664.
[20]Fortner J D,Lyon D Y,Sayes C M,et al. C60 in water:nanocrystal formation and microbial response[J]. Environmental Science & Technology,2005,39(11):4307-4316.
[21]Kang S,Mauter M S,Elimelech M. Microbial cytotoxicity of carbon-based nanomaterials:implications for river water and wastewater effluent[J]. Environmental Science & Technology,2009,43(7):2648-2653.
[22]何世颖,杨林章. 两种氧化铁纳米材料对土壤细菌群落影响的研究[C]// 全国农业环境科学学术研讨会.第五届全国农业环境科学学术研讨会论文集,2013年.
[23]李琳慧. 纳米TiO2对土壤氮转化相关微生物和酶的影响[D]. 长春:吉林大学,2015.
[24]Simonet B M,Valcárcel M. Monitoring nanoparticles in the environment[J]. Analytical and Bioanalytical Chemistry,2009,393(1):17-21.
[25]Lee C W,Mahendra S,Zodrow K,et al. Erratum:developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana[J]. Environmental Toxicology & Chemistry,2010,29(3):669-675.
[26]Ma X,Geisler-Lee J,Deng Y,et al. Interactions between engineered nanoparticles (ENPs) and plants:phytotoxicity,uptake and accumulation[J]. Science of the Total Environment,2010,408(16):3053-3061.
[27]Yang L,Watts D J. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles[J]. Toxicology Letters,2005,158(2):122-132.
[28]Asli S,Neumann P M. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport[J]. Plant Cell & Environment,2009,32(5):577-584.
[29]Yang F,Liu C,Gao F,et al. The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction[J]. Biological Trace Element Research,2007,119(1):77-88.
[30]Lee W M,An Y J,Yoon H,et al. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum):plant agar test for water-insoluble nanoparticles[J]. Environmental Toxicology and Chemistry,2008,27(9):1915-1921.
[31]Lin D,Xing B. Phytotoxicity of nanoparticles:inhibition of seed germination and root growth[J]. Environ Pollut,2007,150(2):243-250.
[32]刘涛,向垒,余忠雄,等. 水稻幼苗对纳米氧化铜的吸收及根系形态生理特征响应[J]. 中国环境科学,2015,35(5):1480-1486.
[33]Doshi R,Braida W,Christodoulatos C,et al. Nano-aluminum:transport through sand columns and environmental effects on plants and soil communities[J]. Environmental Research,2008,106(3):296-303.
[34]Stampoulis D,Sinha S K,White J C. Assay-dependent phytotoxicity of nanoparticles to plants[J]. Environmental Science & Technology,2009,43(24):9473-9479.
[35]Dimkpa C O,Mclean J E,Latta D E,et al. CuO and ZnO nanoparticles:phytotoxicity,metal speciation,and induction of oxidative stress in sand-grown wheat[J]. Journal of Nanoparticle Research,2012,14(9):1-15.
[36]Navarro E,Baun A,Behra R,et al. Environmental behavior and ecotoxicity of engineered nanoparticles to algae,plants,and fungi[J]. Ecotoxicology,2008,17(5):372-386.
[37]王震宇,赵建,李娜,等. 人工纳米颗粒对水生生物的毒性效应及其机制研究进展[J]. 环境科学,2010,31(6):1409-1418.
[38]Liu Q,Zhao Y,Wan Y,et al. Study of the inhibitory effect of water-soluble fullerenes on plant growth at the cellular level[J]. ACS Nano,2010,4(10):5743-5748.
[39]王淑玲,张玉喜,刘汉柱,等. 氧化铜纳米颗粒对水稻幼苗根系代谢毒性的研究[J]. 环境科学,2014,35(5):1968-1973.
[40]Zhang Z,He X,Zhang H,et al. Uptake and distribution of ceria nanoparticles in cucumber plants[J]. Metallomics Integrated Biometal Science,2011,3(8):816-822.
[41]Birbaum K,Brogioli R,Schellenberg M,et al. No evidence for cerium dioxide nanoparticle translocation in maize plants[J]. Environmental Science & Technology,2010,44(22):8718-8723.
[42]López-Moreno M L,Rosa G D L,Hernández-Viezcas J ,et al. Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants[J]. Environmental Science & Technology,2010,44(19):7315-7320.
[43]Roche R D L T,Servin A,Hawthorne J,et al. Terrestrial trophic transfer of bulk and nanoparticle La2O3 does not depend on particle size[J]. Environmental Science & Technology,2015,49(19):11866-11874.
[44]Holbrook R D,Murphy K E,Morrow J B,et al. Trophic transfer of nanoparticles in a simplified invertebrate food web[J]. Nature Nanotechnology,2008,3(6):352-355.
[45]Werlin R,Priester J H,Mielke R E,et al. Biomagnification of cadmium selenide quantum dots in a simple experimental microbial food chain[J]. Nature Nanotechnology,2011,6(1):65-71.
[46]Conway J R,Hanna S K,Lenihan H S,et al. Effects and implications of trophic transfer and accumulation of CeO2 nanoparticles in a marine mussel[J]. EnvironmentalScience & Technology,2014,48(3):1517-1524.
[47]Zhu X,Wang J,Zhang X,et al. Trophic transfer of TiO2 nanoparticles from Daphnia to zebrafish in a simplified freshwater food chain[J]. Chemosphere,2010,79(9):928-933.
[48]Judy J D,Unrine J M,Rao W,et al. Bioaccumulation of gold nanomaterials by Manduca sexta through dietary uptake of surface contaminated plant tissue[J]. Environmental Science & Technology,2012,46(22):12672-12678.

相似文献/References:

[1]蒋宝南,刘腾飞,单建明,等.QuEChERS-GC/μECD法测定土壤中的毒死蜱残留量[J].江苏农业科学,2014,42(12):332.
 Jiang Baonan,et al.Determination of chlorpyrifos residues in soil by QuEChERS-GC/μECD[J].Jiangsu Agricultural Sciences,2014,42(13):332.
[2]李国锋,魏瑞成,王冉.高效液相色谱法测定土壤中联苯与间羟基苯甲酸残留[J].江苏农业科学,2014,42(12):316.
 Li Guofeng,et al.Determination of biphenyl and M-hydroxy benzoic acid residues in soil by high performance liquid chromatography[J].Jiangsu Agricultural Sciences,2014,42(13):316.
[3]史景允,于伟红,梁秋生.蓖麻对镉污染土壤的修复潜力[J].江苏农业科学,2014,42(11):386.
 Shi Jingyun,et al(8).Potential repairing of cadmium contaminated soil by castor oil plant[J].Jiangsu Agricultural Sciences,2014,42(13):386.
[4]何继山,梁杏,李静.土样浸提液电导率与盐分关系的逐步回归分析[J].江苏农业科学,2014,42(10):314.
 He Jishan,et al.Regression analysis of relationship between soil samples leaching solution conductivity and solinity[J].Jiangsu Agricultural Sciences,2014,42(13):314.
[5]徐洪文,卢妍.土壤碳矿化及活性有机碳影响因子研究进展[J].江苏农业科学,2014,42(10):4.
 Xu Hongwen,et al.Research progress on soil carbon mineralization and factors affecting active organic carbon[J].Jiangsu Agricultural Sciences,2014,42(13):4.
[6]李范,李娜,陈建中,等.基于磷脂脂肪酸提取方法的微生物群落结构研究[J].江苏农业科学,2014,42(09):323.
 Li Fan,et al.Study on microbial community structure based on phospholipid fatty acid extraction method[J].Jiangsu Agricultural Sciences,2014,42(13):323.
[7]张乐森,刘悦上,马金芝,等.山东省滨州市设施蔬菜土壤退化防治与修复对策[J].江苏农业科学,2013,41(07):141.
 Zhang Lesen,et al.Control and restoration strategies of facility vegetable soil degradation in Binzhou of Shandong Province[J].Jiangsu Agricultural Sciences,2013,41(13):141.
[8]尹辉,李晖,蒋忠诚,等.典型岩溶区土壤水分的空间异质性研究[J].江苏农业科学,2013,41(07):332.
 Yin Hui,et al.Study on spatial variability of soil water content in typical karst area[J].Jiangsu Agricultural Sciences,2013,41(13):332.
[9]覃怀德,吴炳孙,吴敏,等.橡胶园土壤钾素空间变异与分区管理技术——以海南省琼中县为例[J].江苏农业科学,2013,41(08):326.
 Qin Huaide,et al.Spatial variability and regionalized management of soil potassium nutrient in rubber plantation—Taking Qiongzhong County of Hainan Province as an example[J].Jiangsu Agricultural Sciences,2013,41(13):326.
[10]符勇,周忠发,王昆,等.基于贵州喀斯特高原山区的烟草种植适宜性研究[J].江苏农业科学,2014,42(09):92.
 Fu Yong,et al.Study on planting suitability of tobacco based on Guizhou karst mountain plateau[J].Jiangsu Agricultural Sciences,2014,42(13):92.

备注/Memo

备注/Memo:
收稿日期:2017-01-29
基金项目:国家自然科学基金(编号:31470619);中央级公益性科研院所基金(编号:RISF2013001、RISFZ-2016-17)。
作者简介:张莹(1990—),女,山东寿光人,硕士研究生,研究方向为农业环境保护。E-mail:zdzz1209@163.com。
通信作者:陈光才,博士,研究员,主要从事污染环境的生态修复研究。E-mail:guangcaichen@sohu.com。
更新日期/Last Update: 2018-07-05