|本期目录/Table of Contents|

[1]熊军波,刘洋,田宏,等.紫花苜蓿幼苗茎叶响应盐胁迫的双向电泳比较分析[J].江苏农业科学,2018,46(14):148-153.
 Xiong Junbo,et al.Two dimensional electrophoresis analysis of salt-stress response proteins in leaf and stem of alfalfa seedlings[J].Jiangsu Agricultural Sciences,2018,46(14):148-153.
点击复制

紫花苜蓿幼苗茎叶响应盐胁迫的双向电泳比较分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第46卷
期数:
2018年第14期
页码:
148-153
栏目:
畜牧兽医与水产蚕桑
出版日期:
2018-07-25

文章信息/Info

Title:
Two dimensional electrophoresis analysis of salt-stress response proteins in leaf and stem of alfalfa seedlings
作者:
熊军波 刘洋 田宏 张鹤山 陈明新
湖北省农业科学院畜牧兽医研究所/动物胚胎工程及分子育种湖北省重点实验室,湖北武汉 430064
Author(s):
Xiong Junboet al
关键词:
紫花苜蓿盐胁迫蛋白质耐盐调节机制双向电泳光合作用胁迫防御应答碳水化合物代谢转录调控信号传导细胞分化次生代谢
Keywords:
-
分类号:
S541+.101
DOI:
-
文献标志码:
A
摘要:
紫花苜蓿是全球栽培最为广泛的豆科牧草,土壤盐碱化是导致苜蓿减产的主要因素之一。从蛋白质组学角度对紫花苜蓿苗期响应盐胁迫的地上部蛋白质组进行研究,以揭示紫花苜蓿耐盐调节机制,发掘耐盐应答相关蛋白。6日龄紫花苜蓿中苜一号幼苗在0、200 mmol/L NaCl处理9 d后,采用双向电泳分别分离了其茎叶部蛋白组,在对照和处理间20个蛋白质点丰度发生2倍以上变化,采用MALDI-TOF-TOF/MS对差异蛋白进行鉴定,最终有14个蛋白鉴定成功。功能分析表明,这些蛋白主要参与光合作用、胁迫防御应答、碳水化合物代谢、转录调控和信号传导、细胞分化和次生代谢。
Abstract:
-

参考文献/References:

[1]Maas E,Hoffman G.Crop salt tolerance:evaluation of existing data[C]. Managing Saline Water for Irrigation Proceedings of the International Salinity Conference Ed HE Dregne,1977:187-198.
[2]FAO. The state of the worlds land and water resources for food and agriculture (SOLAW)-Managing systems at risk[EB/OL]. http://www.fao.org/docrep/015/i1688e/i1688e00.pdf.
[3]Tavakkoli E,Rengasamy P,Mcdonald G K. High concentrations of Na+ and Cl- ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress[J]. Journal of Experimental Botany,2010,61(15):4449-4459.
[4]Munns R,Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology,2008,59(1):651-681.
[5]Vinocur B,Altman A. Recent advances in engineering plant tolerance to abiotic stress:achievements and limitations[J]. Current Opinion in Biotechnology,2005,16(2):123-132.
[6]张立全,张凤英,哈斯阿土拉. 紫花苜蓿耐盐性研究进展[J]. 草业学报,2012,2(16):296-305.
[7]Postnikova O A,Shao J,Nemchinov L G. Analysis of the alfalfa root transcriptome in response to salinity stress[J]. Plant & Cell Physiology,2013,54(7):1041-1055.
[8]Jin H,Sun Y,Yang Q,et al. Screening of genes induced by salt stress from Alfalfa[J]. Molecular Biology Reports,2010,37(2):745-753.
[9]Zhang H,Han B,Wang T,et al. Mechanisms of plant salt response:insights from proteomics[J]. Journal of Proteome Research,2012,11(1):49-67.
[10]Xiong J,Yang Q,Kang J,et al. Simultaneous isolation of DNA,RNA,and protein from Medicago truncatula L.[J]. Electrophoresis,2011,32(2):321-330.
[11]Lv D W,Subburaj S,Cao M,et al. Proteome and phosphoproteome characterization reveals new response and defense mechanisms of Brachypodium distachyon leaves under salt stress[J]. Molecular & Cellular Proteomics Mcp,2014,13(2):632-652.
[12]Guskov A,Kern J,Gabdulkhakov A,et al. Cyanobacterial photosystem Ⅱ at 2.9  resolution and the role of quinones,lipids,channels and chloride[J]. Nature Structural and Molecular Biology,2009,16(3):334.
[13]Brandle J R,Campbell W F,Sisson W B,et al. Net photosynthesis,electron transport capacity,and ultrastructure of Pisum sativum L. exposed to ultraviolet-B radiation[J]. Plant Physiology,1977,60(1):165-169.
[14]Wood P M,Bendall D S. The reduction of plastocyanin by plastoquinol-1 in the presence of chloroplasts. A dark electron transfer reaction involving components between the two photosystems[J]. European Journal of Biochemistry,1976,61(2):337-344.
[15]梅杨,李海蓝,谢晋,等. 核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)[J]. 植物生理学报,2007,43(2):363-368.
[16]Abogadallah G M. Antioxidative defense under salt stress[J]. Plant Signaling & Behavior,2010,5(4):369-374.
[17]Martin T,Frommer W B,Salanoubat M,et al. Expression of an Arabidopsis sucrose synthase gene indicates a role in metabolization of sucrose both during phloem loading and in sink organs[J]. Plant Journal,1993,4(2):367-377.
[18]Amor Y,Haigler C H,Johnson S,et al. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants[J]. Proceedings of the National Academy of Sciences of the United States of America,1995,92(20):9353-9357.
[19]卢倩,弭晓菊,崔继哲. 植物甘油醛-3-磷酸脱氢酶作用机制的研究进展[J]. 生物技术通报,2013(8):1-6.
[20]Laloi C,Apel K,Danon A. Reactive oxygen signalling:the latest news[J]. Current Opinion in Plant Biology,2004,7(3):323-328.
[21]Abogadallah G M. Antioxidative defense under salt stress[J]. Plant Signaling & Behavior,2010,5(4):369-374.
[22]Mittler R. Oxidative stress,antioxidants and stress tolerance[J]. Trends in Plant Science,2002,7(9):405-410.
[23]Miao Y,Lv D,Wang P,et al. An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses[J]. Plant Cell,2006,18(10):2749-2766.
[24]戚元成,张世敏,王丽萍,等. 谷胱甘肽转移酶基因过量表达能加速盐胁迫下转基因拟南芥的生长[J]. 植物生理与分子生物学学报,2004,30(5):517-522.
[25]Borad V,Sriram S. Pathogenesis-related proteins for the plant protection[J]. Asian J Exp Sci,2008,22(3):189-196.
[26]Jiang Y,Yang B,Harris N S,et al. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots[J]. Journal of Experimental Botany,2007,58(13):3591-3607.
[27]Feng Y,Wang J,Luo S. Effects of exogenous jasmonic acid on concentrations of direct-defense chemicals and expression of related genes in Bt (Bacillus thuringiensis) corn Zea mays[J]. Agricultural Sciences in China,2007,6(12):1456-1462.
[28]Stenzel I,Hause B,Proels R,et al. The AOC promoter of tomato is regulated by developmental and environmental stimuli[J]. Phytochemistry,2008,69(9):1859-1869.
[29]Pang Q,Chen S,Dai S,et al. Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila[J]. Journal of Proteome Research,2010,9(5):2584-2599.
[30]Jiang Y,Yang B,Harris N S,et al. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots[J]. Journal of Experimental Botany,2007,58(13):3591-3607.
[31]Mortimer J C,Laohavisit A,Macpherson N,et al. Annexins:multifunctional components of growth and adaptation[J]. Journal of Experimental Botany,2008,59(3):533-544.
[32]Hanauskeabel H M,Park M H,Hanauske A R,et al. Inhibition of the G1-S transition of the cell cycle by inhibitors of deoxyhypusine hydroxylation[J]. Biochimica et Biophysica Acta,1994,1221(2):115-124.
[33]时广红,王彦珍,魏建华. eIF-5A与DHS功能研究及应用进展[J]. 生物技术通报,2009(5):21-26.
[34]Feng H,Chen Q,Feng J,et al. Functional characterization of the Arabidopsis eukaryotic translation initiation factor 5A-2 that plays a crucial role in plant growth and development by regulating cell division,cell growth,and cell death[J]. Plant Physiology,2007,144(3):1531-1545.
[35]Patton E E,Willems A R,Tyers M. Combinatorial control in ubiquitin-dependent proteolysis:Dont skp the F-box hypothesis[J]. Trends in Genetics,1998,14(6):236-243.
[36]Jackson P K,Eldridge A G,Freed E,et al. The lore of the RINGs:substrate recognition and catalysis by ubiquitin ligases[J]. Trends in Cell Biology,2000,10(10):429-439.
[37]Hartmann-Petersen R,Wallace M,Hofmann K,et al. The Ubx2 and Ubx3 cofactors direct Cdc48 activity to proteolytic and nonproteolytic ubiquitin-dependent processes[J]. Current Biology,2004,14(9):824-828.
[38]Rancour D M,Dickey C E,Park S,et al. Characterization of AtCDC48. Evidence for multiple membrane fusion mechanisms at the plane of cell division in plants[J]. Plant Physiology,2002,130(3):1241-1253.

相似文献/References:

[1]刘骥,王燕,郭建华,等.盐胁迫诱导的TabZIP60转录因子的筛选与分析[J].江苏农业科学,2013,41(08):18.
 Liu Ji,et al.Screening and analysis of TabZIP60 transcription factor induced by salt stress[J].Jiangsu Agricultural Sciences,2013,41(14):18.
[2]冯蕾,刘国荣,侯晓杰,等.NaCl胁迫对枳椇和皂荚生长及渗透调节物质的影响[J].江苏农业科学,2014,42(12):230.
 Feng Lei,et al.Effects of NaCl stress on growth and osmotic regulation of Hovenia dulcia and Gleditsia sinensis[J].Jiangsu Agricultural Sciences,2014,42(14):230.
[3]陈阳春,张本厚,贾明良,等.盐胁迫对半夏组培苗生长及生理指标的影响[J].江苏农业科学,2014,42(12):62.
 Chen Yangchun,et al.Effects of salt stress on growth and physiological indices of tissue culture seedlings of Pinellia ternata (Thunb.) Breit.[J].Jiangsu Agricultural Sciences,2014,42(14):62.
[4]王鑫,孔祥生.盐胁迫对流苏树愈伤组织生理生化特性的影响[J].江苏农业科学,2014,42(11):54.
 Wang Xin,et al().Effect of salt stress on physio-biochemical indices of Chionanthus retusus callus[J].Jiangsu Agricultural Sciences,2014,42(14):54.
[5]吕艳伟,何文慧,陈雨鸥,等.盐胁迫对小麦幼苗光合色素含量和细胞膜的影响[J].江苏农业科学,2013,41(06):74.
 Lü Yanwei,et al.Effects of salt stress on photosynthetic chlorophyll content and cell membrane in wheat[J].Jiangsu Agricultural Sciences,2013,41(14):74.
[6]朱强,邹梦辉,安黎,等.琼花对4种草坪植物的化感作用[J].江苏农业科学,2014,42(10):172.
 Zhu Qiang,et al.Allelopathy of Viburnum macrocephalum to four turfgrass plants[J].Jiangsu Agricultural Sciences,2014,42(14):172.
[7]包奇军,柳小宁,张华瑜,等.NaCl与NaHCO3+Na2CO3对不同基因型啤酒大麦萌发期胁迫效应的比较[J].江苏农业科学,2014,42(10):92.
 Bao Qijun,et al.Comparison of stress effects of NaCl and NaHCO3+Na2CO3 on different genotypes of malting barley seeds during germination stage[J].Jiangsu Agricultural Sciences,2014,42(14):92.
[8]王小山,朱平华,鲍国成,等.盐碱胁迫对紫花苜蓿根、茎和叶重要养分离子平衡的影响[J].江苏农业科学,2013,41(07):190.
 Wang Xiaoshan,et al.Effect of salt stress on important nutrient ion balance in roots,stems and leaves of Medicago sativa[J].Jiangsu Agricultural Sciences,2013,41(14):190.
[9]谷文英,牟莹莹,钱泽,等.外源甜菜碱对盐胁迫下菊苣幼苗线粒体膜氧化损伤的缓解作用[J].江苏农业科学,2013,41(07):198.
 Gu Wenying,et al.Mitigative effect of exogenous glycine betaine on mitochondrial membrane oxidative damage of chicory seedling under salt stress[J].Jiangsu Agricultural Sciences,2013,41(14):198.
[10]杨永恒,黄苏珍.NaCl胁迫下甜菊不同耐盐性单株的生长及生理响应[J].江苏农业科学,2013,41(08):87.
 Yang Yongheng,et al.Growth and physiological response of Stevia rebaudiana Bertoni plants with different salt tolerance under salt stress[J].Jiangsu Agricultural Sciences,2013,41(14):87.

备注/Memo

备注/Memo:
收稿日期:2016-05-17
基金项目:国家自然科学基金(编号:31402130);湖北省重点实验室开放课题(编号:2012ZD201);湖北农业科学院青年科学基金(编号:2012NKYJJ12)。
作者简介:熊军波(1982—),男,湖北天门人,博士,副研究员,主要从事牧草分子育种研究。Tel:(027)87380139;E-mail:jbx9715@126.com。
通信作者:刘洋,研究员,主要从事牧草遗传育种研究。E-mail:liuyang430209@126.com。
更新日期/Last Update: 2018-07-20