|本期目录/Table of Contents|

[1]丁鸽,张代臻,丁小余,等.基于线粒体nad1 intron 2序列的金钗石斛和混淆品亲缘关系及DNA条形码研究[J].江苏农业科学,2018,46(21):38-41.
 Ding Ge,et al.Study on genetic relationship and DNA barcoding between Dendrobium nobile and its adulterants based on mitochondrial nad1 intron 2 sequence[J].Jiangsu Agricultural Sciences,2018,46(21):38-41.
点击复制

基于线粒体nad1 intron 2序列的金钗石斛和混淆品
亲缘关系及DNA条形码研究
(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第46卷
期数:
2018年第21期
页码:
38-41
栏目:
生物技术
出版日期:
2018-11-05

文章信息/Info

Title:
Study on genetic relationship and DNA barcoding between Dendrobium nobile and its adulterants based on mitochondrial nad1 intron 2 sequence
作者:
丁鸽1 张代臻3 丁小余2 蔡照胜1 高士斌4
1.盐城工学院化学化工学院,江苏盐城 224003; 2.南京师范大学生命科学学院,江苏南京 210046;
3.江苏省滩涂生物资源与环境保护重点建设实验室,江苏盐城 224002; 4.中国林业科学研究院林产化学工业研究所,江苏南京 210042
Author(s):
Ding Geet al
关键词:
金钗石斛nad1基因第2内含子单核苷酸多态性亲缘关系DNA条形码
Keywords:
-
分类号:
S567.23+9.01
DOI:
-
文献标志码:
A
摘要:
为了建立简便、重复性高的金钗石斛的分子鉴别方法,对金钗石斛及其混淆品的亲缘关系进行分析并构建稳定的序列条形码分析,根据金钗石斛及其混淆品的nad1 intron 2序列,寻找其中存在的特异性位点并设计特异性鉴别引物,运用Mega 5.0等软件进行遗传关系分析并构建系统进化树。根据序列中存在的单核苷酸多态性(SNP)位点及特异性鉴别引物,可在53 ℃的复性条件下扩增得到约400 bp的条带,将金钗石斛与其混淆品成功分开;构建的UPGMA树可以将金钗石斛及其混淆品鉴别开。SNP位点及位点特异性PCR具有高效、准确、省时的特点,有广泛的应用前景。同时,通过nad1基因第2内含子可以分析正品与混淆品之间的亲缘关系并成功构建物种分析的条形码序列,为石斛药材的鉴别提供了可靠的科学依据,也为构建更完整的DNA barcoding(DNA条形码)数据库奠定基础。
Abstract:
-

参考文献/References:

[1]应俊生. 中国种子植物物种多样性及其分布格局[J]. 生物多样性,2001,9(4):393-398.
[2]耿丽霞,郑瑞,任洁,等. 新型联合片段:nrDNA ITS+nad 1-intron 2在枫斗类石斛鉴定中的意义[J]. 药学学报,2015,50(8):1060-1067.
[3]Ding X Y,Xu L S,Wang Z T,et al. Authentication of stems of Dendrobium officinale by rDNA ITS region sequences[J]. Planta Medica,2002,68(2):191-192.
[4]国家药典委员会. 中华人民共和国药典[M]. 北京:化学工业出版社,2005.
[5]Ding X Y,Wang Z T,Zhou K Y,et al. Allele-specific primers for diagnostic PCR authentication of Dendrobium officinale[J]. Planta Medica,2003,69(6):587-588.
[6]Qian L,Ding G,Zhou Q,et al. Molecular authentication of Dendrobium loddigesii Rolfe by amplification refractory mutation system (ARMS)[J]. Planta Medica,2008,74(4):470-473.
[7]Gutierres S,Combettes B,De Paepe R,et al. In the Nicotiana sylvestris CMSⅡ mutant,a recombination-mediated change 5′ to the first exon of the mitochondrial nad1 gene is associated with lack of the NADH:ubiquinone oxidoreductase (complex Ⅰ) NAD1 subunit[J]. European Journal of Biochemistry,1999,261(2):361-370.
[8]Gugerli F,Senn J,Anzidei M,et al. Chloroplast microsatellites and mitochondrial nad1 intron2 sequences indicate congruent phylogenetic relationships among Swiss stone pine(Pinus cembra),Siberian stone pine(Pinus sibirica),and Siberian dwarf pine(Pinus pumila)[J]. Molecular Ecology,2001,10(6):1489-1497.
[9]Sanjur O I,Piperno D R,Andres T C,et al. Phylogenetic relationships among domesticated and wild species of Cucurbita(Cucurbitaceae)inferred from a mitochondrial gene:implications for crop plant evolution and areas of origin[J]. Proceedings of the National Academy of Sciences,2002,99(1):535-540.
[10]杨昭庆,洪坤学. 单核苷酸多态性的研究进展[J]. 国际遗传学杂志,2000(1):4-8
[11]Yoon M S,Song Q J,Choi I Y,et al. BARCSoySNP23:a panel of 23 selected SNPs for soybean cultivar identification[J]. Theoretical and Applied Genetics,2007,114(5):885-899.
[12]Schwarz G,Baumler S,Block A,et al. Determination of detection and quantification limits for SNP allele frequency estimation in DNA pools using real time PCR[J]. Nucleic Acids Research,2004,32(3):e24.
[13]Nasu S,Suzuki J,Ohta R,et al. Search for and analysis of single nucleotide polymorphisms(SNPs)in rice(Oryza sativa,Oryza rufipogon)and establishment of SNP markers[J]. DNA Research,2002,9(5):163-171.
[14]Gabrielle S S,Christine G,Richard S H. A novel gene for neonatal diabetes maps to chromosome 10p12.1-p13[J]. Diabetes,2003,52(10):2636-2638.
[15]Ding G,Xu G H,Zhang W C,et al. Preliminary geoherbalism study of Dendrobium officinale food by DNA molecular markers[J]. European Food Research and Technology,2008,227(4):1283-1286.
[16]DeSalle R,Birstein V J. PCR identification of black caviar[J]. Nature,1996,381(6579):197-198.
[17]Sasaki Y,Fushimi H,Cao H,et al. Sequence analysis of Chinese and Japanese Curcuma drugs on the 18S rRNA gene and trnK gene and the application of amplification-refractory mutation system analysis for their authentication[J]. Biological & Pharmaceutical Bulletin,2002,25(12):1593-1599.
[18]Yang D Y,Fushimi H,Cai S Q,et al. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RELP) and amplification refractory mutation system (ARMS) analyses of medicinally used Rheum species and their application for identification of Rhei rhizoma[J]. Biological & Pharmaceutical Bulletin,2004,27(5):661-669.
[19]丁小余,王峥涛,徐红,等. 枫斗类石斛rDNA ITS区的全序列数据库及其序列分析鉴别[J]. 药学学报,2002,37(7):567-573.
[20]丁鸽,张代臻,张伟超,等. 保健食品铁皮石斛及其混淆品的分子鉴别及亲缘关系分析[J]. 食品科学,2011,32(2):141-145.
[21]Li X W,Yang Y,Henry R J,et al. Plant DNA barcoding:from gene to genome[J]. Biological Reviews,2015,90(1):157-166.
[22]Zuo Y J,Chen Z J,Kondo K,et al. DNA barcoding of Panax species[J]. Planta Medica,2011,77(2):182-187.
[23]Sun Z Y,Gao T,Yao H,et al. Identification of Lonicera japonica and its related species using the DNA barcoding method[J]. Planta Medica,2011,77(3):301-306.
[24]Yao H,Song J Y,Ma X Y,et al. Identification of Dendrobium species by a candidate DNA barcode sequence:the chloroplast psbA-trnH intergenic region[J]. Planta Medica,2009,75(6):667-669.
[25]汤欢,向丽,李西文,等. 濒危兰科药用植物DNA条形码鉴[J]. 中国中药杂志,2017,42(6):2058-2067.
[26]Doyle J J,Doyle J L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue[J]. Phyto Chemistry Bulletin,1987,19(1):11-15.
[27]张婷,王峥涛,徐珞珊,等. 线粒体nad1内含子2序列在石斛属植物分子鉴定中的应用[J]. 中草药,2005,36(7):1059-1062.
[28]田旭飞,曲波. DNA条形码技术在入侵植物刺萼龙葵检验检疫中的应用[J]. 杂草学报,2017,35(1):30-35.
[29]李国良,张建霞,曾宋君,等. 基于ITS,Nad intron2和psbA-trnH序列探讨霍山石斛的分类位置[J]. 广东农业科学,2013,40(13):145-147.
[30]袁俊杰,马新华,龙阳,等. 利用DNA条形码对10种苍耳属杂草的鉴定[J]. 杂草学报,2016,34(3):11-16.
[31]邵世光,韩丽,马艳红,等. 枫斗类石斛cpDNA psbA-trnH的序列分析与鉴别[J]. 药学学报,2009,44(10):1173-1178.
[32]袁俊杰,魏霜,马新华,等. trnH-psbA序列作为DNA条形码在苍耳属杂草鉴定中的应用[J]. 杂草学报,2016,34(2):1-6.
[33]胡佳,汪登强,危起伟,等. 施氏鲟、达氏鳇及其杂交子代的分子鉴定[J]. 中国水产科学,2010,17(1):21-29.
[34]高玉时,唐修君,屠云洁,等. 基于线粒体CO基因15个鸡种的DNA编码研究[J]. 中国农业科学,2011,44(3):587-594.
[35]Levings C S,Brown G G. Molecular biology of plant mitochondria[J]. Cell,1989,56(2):171-179.
[36]陆佳妮,赵志礼,倪梁红,等. 线粒体基因在药用植物DNA分子鉴定中的应用[J]. 中草药,2016,47(10):1791-1796.
[37]郭亚龙,葛颂. 线粒体nad1基因内含子在稻族系统学研究中的价值——兼论Porteresia的系统位置[J]. 植物分类学报,2004,42(2):333-344.
[38]Sperisen C,Buchler U,Gugerli F,et al. Tandem repeats in plant mitochondrial genomes:application to the analysis of population differentiation in the conifer Norway spruce[J]. Molecular Ecology,2001,10(1):257-263.
[39]Li J M,Jin Z X. Genetic variation and differentiation in Torreya jackii Chun,an endangered plant endemic to China[J]. Plant Science,2007,172(5):1048-1053.
[40]Hebert P D,Cywinska A,Ball S L,et al. Biological identifications through DNA barcodes[J]. Proceedings. Biological Sciences/the Royal Society,2003,270(1512):313-321.

相似文献/References:

[1]李晓君,潘继军,曹琦,等.天然有机物添加对金钗石斛快繁的影响[J].江苏农业科学,2019,47(18):79.
 Li Xiaojun,et al.Effect of natural organics in propagation of Dendrobium nobile[J].Jiangsu Agricultural Sciences,2019,47(21):79.
[2]高华山,陈明辉,齐光,等.金钗石斛总黄酮提取工艺优化及抗氧化活性[J].江苏农业科学,2019,47(24):194.
 Gao Huashan,et al.Optimization of extraction process and evaluation of antioxidative activity of total flavonoids from Dendrobium nobile Lindl.[J].Jiangsu Agricultural Sciences,2019,47(21):194.
[3]李明松,李金玲,赵致,等.附丹霞石栽培金钗石斛矿质元素吸收与分配研究[J].江苏农业科学,2023,51(16):119.
 Li Mingsong,et al.Study on absorption and distribution of mineral elements in Dendrobium nobile cultivated with Danxia stone[J].Jiangsu Agricultural Sciences,2023,51(21):119.

备注/Memo

备注/Memo:
收稿日期:2017-07-22
基金项目:国家自然科学基金(编号:21606192);江苏省自然科学基金(编号:BK20171276);国家重点研发计划(编号:2016YFD0600800)。
作者简介:丁鸽(1982—),女,山东烟台人,博士,副教授,从事药用植物资源多样性及成分研究。E-mail:dingzyc@163.com。
更新日期/Last Update: 2018-11-05