|本期目录/Table of Contents|

[1]周晓伦,万建新,王卫卫,等.一株提高植物幼苗耐受Cr6+细菌(Exiguobacterium sp.S2)的分离与鉴定[J].江苏农业科学,2019,47(07):273-277.
 Zhou Xiaolun,et al.Isolation and identification of Exigubacterium sp. strain S2 improving the tolerance of plant seedlings to heavy metal Cr(Ⅵ)[J].Jiangsu Agricultural Sciences,2019,47(07):273-277.
点击复制

一株提高植物幼苗耐受Cr6+细菌
(Exiguobacterium sp.S2)的分离与鉴定
(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第47卷
期数:
2019年第07期
页码:
273-277
栏目:
资源与环境
出版日期:
2019-05-10

文章信息/Info

Title:
Isolation and identification of Exigubacterium sp. strain S2 improving the tolerance of plant seedlings to heavy metal Cr(Ⅵ)
作者:
周晓伦1 万建新1 王卫卫2 张伟1 姚彦红1 高芸1
1.甘肃医学院病原生物学教研室,甘肃平凉 744000; 2.西北大学西部资源生物与现代生物技术教育部重点实验室,陕西西安 710069
Author(s):
Zhou Xiaolunet al
关键词:
玉米幼苗Cr6+耐受菌株ACC脱氨酶吲哚乙酸微小杆菌
Keywords:
-
分类号:
X53;S182
DOI:
-
文献标志码:
A
摘要:
植物促生菌因其具有对植物生长促进及增强抗逆性等优点,在植物-微生物联合修复重金属污染土壤中具有良好的应用潜力,能为环境生物修复以及工农业生产提供优良菌种资源,实现其更大范围的应用。以甘肃省平凉市污染土壤中分离得到的Cr6+耐受菌株为目的菌,测定菌株的促植物生长特性(产IAA、溶磷、ACC脱氨酶活性),采用改良的Belimov方法筛选出1株促生特性较好的菌株,进行生理生化及16S rRNA基因序列分析鉴定。初步分离得到32株Cr6+耐受菌株,根据改良的Belimov方法筛选出1株S2菌株,通过生理生化及16S rRNA鉴定S2菌株为Exiguobacterium sp.,GenBank登录号为MH180821。玉米幼苗生长试验表明,与不同Cr6+浓度处理组相比,接种了S2菌株的玉米幼苗根长、茎长、叶面积都有显著提高,平均根长分别增加95.74%、41.34%、194.12%,平均茎长分别增加32.03%、-30.13%、28.96%,平均叶面积分别增加73.94%、35.17%、26.92%,平均鲜质量分别增加33.33%、3362%、-20.00%,其显著提高了玉米幼苗对Cr6+的耐受性。该研究表明,Exiguobacterium sp.S2在污染土壤中能够更好地定殖并保护促植物生长能力的发挥,为重金属污染土壤的植物-微生物联合原位修复提供了良好的微生物资源。
Abstract:
-

参考文献/References:

[1]Karthik C,Ramkumar V S,Pugazhendhi A,et al. Biosorption and biotransformation of Cr(Ⅵ) by novel Cellulosimicrobium funkei strain AR6[J]. Journal of the Taiwan Institute of Chemical Engineers,2017,70:282-290.
[2]Cervantes C,Campos-García J,Devars S,et al. Interactions of chromium with microorganisms and plants[J]. FEMS Microbiology Reviews,2001,25(3):335-347.
[3]Tang S R,Wilke B M,Brooks R R. Heavy-metal uptake by metal-tolerant Elsholtzia haichowensis and Commelina communis from China[J]. Communications in Soil Science and Plant Analysis,2001,32(5/6):895-905.
[4]Khan A G. Relationships between chromium biomagnification ratio,accumulation factor,and mycorrhizae in plants growing on tannery effluent-polluted soil[J]. Environment International,2001,26(5/6):417-423.
[5]Karagiannidis N,Hadjisavva-Zinoviadi S. The mycorrhizal fungus Glomus mosseae enhances growth,yield and chemical composition of a durum wheat variety in 10 different soils[J]. Nutrient Cycling in Agroecosystems,1998,52(1):1-7.
[6]Davies J T,Puryear J D,Newton R J,et al. Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower(Helianthus annuus)[J]. Journal of Plant Physiology,2001,158(6):777-786.
[7]Davies J T,Puryear J D,Newton R J,et al. Mycorrhizal fungi increase chromium uptake by sunflower plants:influence on tissue mineral concentration,growth,and gas exchange[J]. Journal of Plant Nutrition,2002,25(11):2389-2407.
[8]Burd G I,Dixon D G,Glick B R. A plant growth-promoting bacterium that decreases nickel toxicity in seedlings[J]. Applied and Environmental Microbiology,1998,64(10):3663-3668.
[9]Cobbett C S. Phytochelatins and their roles in heavy metal detoxification[J]. Plant Physiology,2000,123(3):825-832.
[10]Jones D L,Hodge A,Kuzyakov Y. Plant and mycorrhizal regulation of rhizodeposition[J]. New Phytologist,2004,163(3):459-480.
[11]Gupta D K,Rai U N,Sinha S,et al. Role of Rhizobium(CA-1)inoculation in increasing growth and metal accumulation in Cicer arietinum L. growing under fly-ash stress condition[J]. Bulletin of Environmental Contamination and Toxicology,2004,73(2):424-431.
[12]Rajkumar M,Ma Y,Freitas H. Characterization of metal-resistant plant-growth promoting Bacillus weihenstephanensis isolated from serpentine soil in Portugal[J]. Journal of Basic Microbiology,2008,48(6):500-508.
[13]Kuffner M,Puschenreiter M,Wieshammer G A,et al. Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows[J]. Plant and Soil,2008,304(1/2):35-44.
[14]Compant S,Clément C,Sessitsch A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants:their role,colonization,mechanisms involved and prospects for utilization[J]. Soil Biology and Biochemistry,2010,42(5):669-678.
[15]东秀珠,蔡妙英. 常见细菌系统鉴定手册[M]. 北京:科学出版社,2001.
[16]Penrose D M,Glick B R. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria[J]. Physiologia Plantarum,2003,118(1):10-15.
[17]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry,1976,72(1):248-254.
[18]Sheng X F,Xia J J,Jiang C Y,et al. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape[J]. Environmental Pollution,2008,156(3):1164-1170.
[19]Sagervanshi A,Kumari P,Nagee A,et al. Isolation and characterization of phosphate solublizing bacteria from anand agriculture soil[J]. International Journal of Life Science and Pharma Research,2012,2(3):L256-L266.
[20]Belimov A A,Hontzeas N,Safronova V I,et al. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern)[J]. Soil Biology and Biochemistry,2005,37(2):241-250.
[21]Zhang Y F,He L Y,Chen Z J,et al. Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape[J]. Journal of Hazardous Materials,2011,186(2/3):1720-1725.
[22]Glick B R,Penrose D M,Li J P. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria[J]. Journal of Theoretical Biology,1998,190(1):63-68.
[23]Patten C L,Glick B R. Role of pseudomonas putida indoleacetic acid in development of the host plant root system[J]. Applied and Environmental Microbiology,2002,68(8):3795-3801.
[24]Glick B R. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase[J]. FEMS Microbiology Letters,2005,251(1):1-7.
[25]Chaudri A M,Allain C,Barbosa-Jefferson V L,et al. A study of the impacts of Zn and Cu on two rhizobial species in soils of a long-term field experiment[J]. Plant and Soil,2000,221(2):167-179.
[26]Bharti N,Yadav D,Barnawal D,et al. Exiguobacterium oxidotolerans,a halotolerant plant growth promoting rhizobacteria,improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt stress[J]. World Journal of Microbiology and Biotechnology,2013,29(2):379-387.
[27]Dastager S G,Kumaran D C,Pandey A. Characterization of plant growth-promoting rhizobacterium Exiguobacterium NⅡ-0906 for its growth promotion of cowpea (Vigna unguiculata)[J]. Biologia,2010,65(2):197-203.
[28]Selvakumar G,Joshi P,Nazim S,et al. Exiguobacterium acetylicum strain 1P(MTCC 8707)a novel bacterial antagonist from the North Western Indian Himalayas[J]. World Journal of Microbiology & Biotechnology,2009,25(1):131-137.

相似文献/References:

[1]钱善勤,龙 茜,陈 盼,等.京尼平苷对玉米幼苗生长的促进作用[J].江苏农业科学,2015,43(02):108.
 Qian Shanqin,et al.Effect of geniposide on growth of maize seedlings[J].Jiangsu Agricultural Sciences,2015,43(07):108.
[2]王辉,植爽,吴钰祥,等.NO供体硝普钠对干旱胁迫下玉米幼苗抗性生理的影响[J].江苏农业科学,2016,44(07):151.
 Wang Hui,et al.Effects of sodium nitroprusside on physiological characteristics of maize seedlings under drought stress[J].Jiangsu Agricultural Sciences,2016,44(07):151.
[3]陈永林,陈小锦,丛玮玮,等.不同价态铬对玉米幼苗铬吸收动力学特征及生长发育的影响[J].江苏农业科学,2017,45(03):46.
 Chen Yonglin,et al.Effects of chromium with different valence on chromium absorption kinetics characteristics and growth of corn seedling[J].Jiangsu Agricultural Sciences,2017,45(07):46.

备注/Memo

备注/Memo:
收稿日期:2019-01-21
基金项目:甘肃省高等学校科学研究项目(编号:2017A-146)。
作者简介:周晓伦(1987—),男,甘肃靖远人,硕士,讲师,主要从事土壤微生物的研究。E-mail:610253095@qq.com。
更新日期/Last Update: 2019-04-05