|本期目录/Table of Contents|

[1]张慧娴,陈铁喜,江晓东,等.中国东部两熟制农田NDVI不对称年际变化趋势及其潜在气候成因[J].江苏农业科学,2019,47(08):242-247.
 Zhang Huixian,et al.Interannual variation trend of NDVI asymmetry in two cropping farmland in eastern China and its potential climate genesis[J].Jiangsu Agricultural Sciences,2019,47(08):242-247.
点击复制

中国东部两熟制农田NDVI不对称年际变化趋势
及其潜在气候成因
(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第47卷
期数:
2019年第08期
页码:
242-247
栏目:
资源与环境
出版日期:
2019-05-19

文章信息/Info

Title:
Interannual variation trend of NDVI asymmetry in two cropping farmland in eastern China and its potential climate genesis
作者:
张慧娴1 陈铁喜1 江晓东2 施婷婷2 王国杰1
1.南京信息工程大学地理科学学院,江苏南京 210044; 2.南京信息工程大学应用气象学院,江苏南京 210044
Author(s):
Zhang Huixianet al
关键词:
双季种植制度农田NDVI植被变化
Keywords:
-
分类号:
S127;S162.5
DOI:
-
文献标志码:
A
摘要:
一年两熟制是我国东部农业区主要的耕作形式和增产方式。利用长序列遥感归一化植被指数(NDVI),研究我国东部两熟制农田1982—2015年间植被变化趋势。研究区域为31°~39°N范围内的东部5省区,包括河北省、河南省、山东省、江苏省以及安徽省。NDVI的多年季节平均显示,1年中有2个峰值,分别出现在5月与8月,对应两季作物各自生长的峰期。在1982—2015年,研究区NDVI呈现显著上升趋势,增速为1.703×10-3/年。根据两熟制种植期,定义6—10月的夏秋作物期和11月至次年5月的冬春种植期。结果发现,NDVI的年际增长主要由冬春作物期贡献,其增长率为2.436×10-3/年,并且远大于夏秋作物期0.676×10-3/年的变率。结合该地区的气温与降水数据发现,在2个作物期,降水并未出现显著变化,而温度都呈现出显著增加趋势。其中冬春作物期温度增速大于夏秋作物期,分别为0.042 ℃/年和0.029 ℃/年。由于冬春作物期平均温度相对较低,同时增温速率更高,因此,增温对植被生长的促进作用在该时期更强,从而造成了NDVI的不对称变化。
Abstract:
-

参考文献/References:

[1]张云霞,李晓兵,陈云浩. 草地植被盖度的多尺度遥感与实地测量方法综述[J]. 地球科学进展,2003,18(1):85-93.
[2]何勇. 中国气候、陆地生态系统碳循环研究[M]. 北京:气象出版社,2006:137-162.
[3]Nemani R R,Keeling C D,Hashimoto H,et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999[J]. Science,2003,300(5625):1560-1563.
[4]Yuan W P,Piao S L,Qin D H,et al. Influence of vegetation growth on the enhanced seasonality of atmospheric CO2[J]. Global Biogeochemical Cycles,2018,32(1):32-41.
[5]Tian H,Lu C,Ciais P,et al. The terrestrial biosphere as a net source of greenhouse gases to the atmophere[J]. Nature,2016,531(7593):225-228.
[6]刘纪远,邵全琴,延晓冬,等. 土地利用变化对全球气候影响的研究进展与方法初探[J]. 地球科学进展,2011,26(10):1015-1022.
[7]Bonan G B,Williams M,Fisher R A,et al. Modeling stomatal conductance in the earth system:linking leaf water-use efficiency and water transport along the soil-plant-atmosphere continuum[J]. Geoscientific Model Development,2014,7(5):2193-2222.
[8]Weiss M,Miller P A,van den Hurk B J,et al. Contribution of dynamic vegetation phenology to decadal climate predictability[J]. Journal of Climate,2014,27(22):8563-8577.
[9]Doelman J C,Stehfest E,Tabeau A,et al. Exploring SSP land-use dynamics using the IMAGE model:regional and gridded scenarios of land-use change and land-based climate change mitigation[J]. Global Environmental Change-Human and Policy Dimensions,2018,48:119-135.
[10]Zeng N,Zhao F,Collatz G J,et al. Agricultural green revolution as a driver of increasing atmospheric CO2 seasonal amplitude[J]. Nature,2014,515(7527):394-397.
[11]傅强,康文星,吴湘雄. 江西省农作物对大气CO2吸收能力的研究[J]. 中南林业科技大学学报,2012,32(4):117-121.
[12]王修兰. 全球农作物对大气CO2及其倍增的吸收量估算[J]. 气象学报,1996,54(4):466-473.
[13]Chen T,van der Werf G R,Gobron N,et al. Global cropland monthly gross primary production in the year 2000[J]. Biogeosciences,2014,11(14):3871-3880.
[14]Duan J Q,Zhou G S. Dynamics of decadal changes in the distribution of double-cropping rice cultivation in China[J]. Chinese Science Bulletin,2013,58(16):1955-1963.
[15]赖纯佳,千怀遂,段海来,等. 淮河流域小麦-水稻种植制度的气候适宜性[J]. 中国农业科学,2011,44(14):2868-2875.
[16]Liu L,Xu X L,Zhuang D F,et al. Changes in the potential multiple cropping system in response to climate change in China from 1960—2010[J]. PLoS One,2013,8(12):e80990.
[17]李正国,杨鹏,周清波,等. 基于时序植被指数的华北地区作物物候期/种植制度的时空格局特征[J]. 生态学报,2009,29(11):6216-6226.
[18]Thcker C J,Pinzon J E,Brown M E,et al. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data[J]. International Journal of Remote Sensing,2005,26:4485-4498.
[19]孙进瑜,彭书时,王旭辉,等. 1982—2006年全球植被生长时空变化[J]. 第四纪研究,2010,30(3):522-530.
[20]方精云,朴世龙,贺金生,等. 近20年来中国植被活动在增强[J]. 中国科学(C辑),2003,33(6):554-565.
[21]Chen T X,Wang G J,Yuan W P,et al. Asymmetric NDVI trends of the two cropping seasons in the Huai River basin[J]. Remote Sensing Letters,2016,7(1):61-70.
[22]Yan H M,Xiao X G,Huang H Q,et al. Multiple cropping intensity in China derived from agro-meteorological observations and MODIS data[J]. Chinese Geographical Science,2014,24(2):205-219.
[23]Bontemps S,Defourny P,Bogaert E V,et al. GLOBCOVER2009-Products description and validation report[EB/OL]. [2018-01-09]. http://due.esrin.esa.int/page_globcover.php.
[24]Pinzon J E,Tucker C J. A Non-Stationary 1981—2012 AVHRR NDVI3g time series[J]. Remote Sensing,2014,6(8):6929-6960.
[25]Wang G J,Garcia D,Liu Y,et al. A three-dimensional gap filling method for large geophysical datasets:application to global satellite soil moisture observations[J]. Environmental Modelling & Software,2012,30(1):139-142.

相似文献/References:

[1]范钊.黄河流域农田土壤有机氯农药残留污染特征研究[J].江苏农业科学,2016,44(05):414.
 Fan Zhao.Residual pollution characteristics of organochlorine pesticides in farmland soils in the Yellow River Basin[J].Jiangsu Agricultural Sciences,2016,44(08):414.
[2]高亚琪,杨艺渊,地力夏提·包尔汉,等.小尺度农田生态系统土地退化监测与评价指标体系建立[J].江苏农业科学,2014,42(03):296.
 Gao Yaqi,et al.Construction of indicator system for monitoring and evaluation of land degradation of small-scale farmland ecosystem[J].Jiangsu Agricultural Sciences,2014,42(08):296.
[3]邱月,张辉.包膜氮肥、保水剂和生物炭在控制农田土壤氮素损失方面的应用综述[J].江苏农业科学,2015,43(10):417.
 Qiu Yue,et al.Application of coated fertilizer, water retention agent and biochar in controlling nitrogen loss in agricultural soil:a review[J].Jiangsu Agricultural Sciences,2015,43(08):417.
[4]夏栋,蔡崇法,龙莉,等.鄂东南花岗岩区不同崩岗侵蚀程度的农田土壤质量评价[J].江苏农业科学,2017,45(15):254.
 Xia Dong,et al.Evaluation of farmland soil quality with different collapsing erosion degree in granite area of southeastern Hubei[J].Jiangsu Agricultural Sciences,2017,45(08):254.
[5]张德喜,吴卿.不同耕作方式对农田土壤养分含量及土壤酶活性的影响[J].江苏农业科学,2018,46(11):234.
 Zhang Dexi,et al.Effects of different tillage methods on soil nutrients contents and enzyme activity in farmland[J].Jiangsu Agricultural Sciences,2018,46(08):234.
[6]程丽红,丁攀,张敏.河南省农田土壤有机氯农药残留污染特征[J].江苏农业科学,2018,46(14):247.
 Cheng Lihong,et al.Pollution characteristics of organochlorine pesticide residues in farmland soils of Henan Province[J].Jiangsu Agricultural Sciences,2018,46(08):247.
[7]王海娟,马红娜,姜海波.秸秆覆盖对塔里木盆地南缘绿洲农田土壤水盐运移的影响[J].江苏农业科学,2018,46(17):281.
 Wang Haijuan,et al.Effect of straw mulching on water and salt movement of oasis farmland on southern margin of Tarim Basin[J].Jiangsu Agricultural Sciences,2018,46(08):281.
[8]龚静静,胡宏祥,朱昌雄,等.秸秆还田对农田生态环境的影响综述[J].江苏农业科学,2018,46(23):36.
 Gong Jingjing,et al.Effect of straw turnover on farmland ecological environment: a review[J].Jiangsu Agricultural Sciences,2018,46(08):36.
[9]王锦旗,宋玉芝,黄进.大气氮沉降对流域总贡献量估算方法研究[J].江苏农业科学,2020,48(11):246.
 Wang Jinqi,et al.Study on estimation method for total contribution of atmospheric nitrogen deposition to watershed[J].Jiangsu Agricultural Sciences,2020,48(08):246.
[10]张淑花,周利军,魏雅冬.施氮量对农田及防护林大型土壤动物群落结构的影响[J].江苏农业科学,2021,49(4):205.
 Zhang Shuhua,et al.Influences of nitrogen application rate on community structure of soil macrofauna in farmland and shelter forest[J].Jiangsu Agricultural Sciences,2021,49(08):205.

备注/Memo

备注/Memo:
收稿日期:2018-02-27
基金项目:国家自然科学基金(编号:31570464);国家重点研发计划(编号:2017YFB0504000)。
作者简介:张慧娴(1993—),女,福建南平人,硕士,主要从事气候变化对植被影响方面的研究。E-mail:zhang_huixian_f@163.com。
通信作者:陈铁喜,博士,教授,主要从事大尺度陆地生态系统碳循环以及气候变化对生态系统的约束作用方面的研究。E-mail:tiexi.chen@vip.163.com。
更新日期/Last Update: 2019-04-20