|本期目录/Table of Contents|

[1]沈明晨,薛超,乔中英,等.CRISPR/Cas9系统在水稻中的发展和利用[J].江苏农业科学,2019,47(10):5-10.
 Shen Mingcheng,et al.Development and utilization of CRISPR/Cas9 system in rice[J].Jiangsu Agricultural Sciences,2019,47(10):5-10.
点击复制

CRISPR/Cas9系统在水稻中的发展和利用(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第47卷
期数:
2019年第10期
页码:
5-10
栏目:
专论与综述
出版日期:
2019-06-12

文章信息/Info

Title:
Development and utilization of CRISPR/Cas9 system in rice
作者:
沈明晨1 薛超1 乔中英2 龚志云1
1.江苏省作物遗传生理重点实验室/植物功能基因组学教育部重点实验室/江苏省作物基因组学和
分子育种重点实验室/扬州大学农学院,江苏扬州 225009; 2.苏州市农业科学院,江苏苏州 215128
Author(s):
Shen Mingchenget al
关键词:
水稻CRISPR/Cas9基因组编辑作物改良
Keywords:
-
分类号:
S511.01
DOI:
-
文献标志码:
A
摘要:
基因组学的快速发展和多种基因组编辑技术的出现,对植物科学以及农业领域中的基因功能研究和遗传改良产生了巨大影响。其中,CRISPR/Cas9系统介导的基因组编辑技术能够快速编辑各种生物体中的基因组,以其简单稳定高效等优点,成为目前最先进且被广泛运用的系统。水稻是我国最重要的粮食作物之一,其遗传资源丰富且基因组小,适合用于基因组编辑技术的研究。讨论水稻改良的基因组编辑策略,重点介绍CRISPR/Cas9系统在水稻抗病性、抗逆性、杂种优势等方面的应用和进展,强调CRISPR/Cas9在水稻改良中的主要挑战和发展意义。
Abstract:
-

参考文献/References:

[1]Jasin M,Haber J E. The democratization of gene editing:insights from site-specific cleavage and double-strand break repair[J]. DNA repair,2016,44:6-16.
[2]Milovanovic V,Smutka L. Asian countries in the global rice market[J]. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis,2017,65(2):679-688.
[3]Miglani G S. Genome editing in crop improvement:present scenario and future prospects[J]. Journal of Crop Improvement,2017,31(4):453-559.
[4]Belhaj K,Chaparrogarcia A,Kamoun S,et al. Editing plant genomes with CRISPR/Cas9[J]. Current Opinion in Biotechnology,2015,32:76-84.
[5]Weeks D P,Spalding M H,Yang B. Use of designer nucleases for targeted gene and genome editing in plants[J]. Plant Biotechnology Journal,2016,14(2):483-495.
[6]Marraffini L A,Sontheimer E J. CRISPR interference:RNA-directed adaptive immunity in bacteria and archaea[J]. Nature Reviews Genetics,2010,11(3):181-190.
[7]Deltcheva E,Chylinski K,Sharma C M,et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase Ⅲ[J]. Nature,2011,471(7340):602-607.
[8]Jinek M,Chylinski K,Fonfara I,et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science,2012,337(6096):816-821.
[9]Komor A C,Badran A H,Liu D R. CRISPR-based technologies for the manipulation of eukaryotic genomes[J]. Cell,2017,168(1/2):20-36.
[10]Barrangou R,Fremaux C,Deveau H,et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science,2007,315(5819):1709-1712.
[11]Marraffini L A,Sontheimer E J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA[J]. Science,2008,322(5909):1843-1845.
[12]Qi L S,Larson M H,Gilbert L A,et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell,2013,152(5):1173-1183.
[13]Gasiunas G,Barrangou R,Horvath P,et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(39):2579-2586.
[14]Jiang F,Taylor D W,Chen J S,et al. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage[J]. Science,2016,351(6275):867-871.
[15]Sternberg S H,LaFrance B,Kaplan M,et al. Conformational control of DNA target cleavage by CRISPR-Cas9[J]. Nature,2015,527(7576):110-113.
[16]Wright A V,Nunez J K,Doudna J A. Biology and applications of CRISPR systems:harnessing natures toolbox for genome engineering[J]. Cell,2016,164(1/2):29-44.
[17]Shan Q W,Wang Y P,Li J,et al. Targeted genome modification of crop plants using a CRISPR-Cas system[J]. Nature Biotechnology,2013,31(8):686-688.
[18]Ma X L,Zhang Q Y,Zhu Q L,et al. A robust CRISPR/Cas9 system for convenient,high-efficiency multiplex genome editing in monocot and dicot plants[J]. Molecular Plant,2015,8(8):1274-1284.
[19]Zhang Z J,Mao Y F,Ha S,et al. A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis[J]. Plant Cell Reports,2016,35(7):1519-1533.
[20]Xie K,Minkenberg B,Yang Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(11):3570-3575.
[21]Cong L,Ran F A,Cox D,et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science,2013,339(6121):819-823.
[22]Mali P,Yang L,Esvelt K M,et al. RNA-guided human genome engineering via Cas9[J]. Science,2013,339(6121):823-826.
[23]Singh V,Braddick D,Dhar P K. Exploring the potential of genome editing CRISPR-Cas9 technology[J]. Gene,2017,599:1-18.
[24]Georges F,Ray H. Genome editing of crops:a renewed opportunity for food security[J]. GM Crops & Food,2017,8(1):1-12.
[25]Jiang W Z,Zhou H B,Bi H H,et al. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in arabidopsis,tobacco,sorghum and rice[J]. Nucleic Acids Research,2013,41(20):e188.
[26]Xu R F,Li H,Qin R Y,et al. Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system[J]. Scientific Reports,2015,5:11491.
[27]Zhang H,Zhang J S,Wei P L,et al. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation[J]. Plant Biotechnology Journal,2014,12(6):797-807.
[28]Zhou H,Liu B,Weeks D P,et al. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice[J]. Nucleic Acids Research,2014,42(17):10903-10914.
[29]Jia H G,Wang N. Targeted genome editing of sweet orange using Cas9/sgRNA[J]. PLoS One,2014,9(4):e93806.
[30]Liang Z,Zhang K,Chen K L,et al. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system[J]. J Genet Genomics,2013,41(2):63-68.
[31]Fan C,Walling J G,Zhang J,et al. Conservation and purifying selection of transcribed genes located in a rice centromere[J]. The Plant Cell,2011,23(8):2821-2830.
[32]Jacobs T B,LaFayette P R,Schmitz R J,et al. Targeted genome modifications in soybean with CRISPR/Cas9[J]. BMC Biotechnology,2015,15(1):1-10.
[33]Brooks C,Nekrasov V,Lippman Z B,et al. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system[J]. Plant Physiology,2014,166(3):1292-1297.
[34]Wang F,Wang C L,Liu P Q,et al. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922[J]. PLoS One,2016,11(4):e0154027.
[35]王芳权,范方军,李文奇,等. 利用CRISPR/Cas9技术敲除水稻Pi21 基因的效率分析[J]. 中国水稻科学,2016,30(5):469-478.
[36]杨海河,毕冬玲,张玉,等. 基于CRISPR/Cas9技术的水稻Pi21 基因编辑材料的创制及稻瘟病抗性鉴定[J]. 分子植物育种,2017(11):4451-4465.
[37]Cheong Y H,Sung S J,Kim B G,et al. Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis[J]. Molecules and Cells,2010,29(2):159-165.
[38]陈鹏程. 水稻OsCBL5在植物耐盐信号传导中的作用研究[D]. 金华:浙江师范大学,2015.
[39]董艳敏. 水稻OsPDR1定向突变及其在耐盐中的功能研究[D]. 南京:南京农业大学,2016.
[40]黄小贞,曾晓芳,李建容,等. 基于CRISPR/Cas9技术的水稻转录因子tify1a和tify1b突变体的创建与分析[J]. 农业生物技术学报,2017,25(6):1003-1012.
[41]Li J,Meng X B,Zong Y,et al. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9[J]. Nature plants,2016,2:16139.
[42]Sun Y,Zhang X,Wu C Y,et al. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase[J]. Molecular Plant,2016,9(4):628-631.
[43]Su N,Hu M L,Wu D X,et al. Disruption of a rice pentatricopeptide repeat protein causes a seedling-specific albino phenotype and its utilization to enhance seed purity in hybrid rice production[J]. Plant Physiol,2012,159(1):227-238.
[44]Cheng S H,Zhuang J Y,Fan Y Y,et al. Progress in research and development on hybrid rice:a super-domesticate in China[J]. Annals of Botany,2007,100(5):959-966.
[45]Chen L,Liu Y G. Male sterility and fertility restoration in crops[J]. Annual Review of Plant Biology,2014,65(1):579-606.
[46]Zhou H,He M,Li J,et al. Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system[J]. Scientific Reports,2016,6:37395.
[47]Khanday I,Skinner D,Yang B,et al. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds[J]. Nature,2019,565:91-95.
[48]Wang C,Liu Q,Shen Y,et al. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes[J]. Nature Biotechnology,2019,37(3):283.
[49]Wang Y H,Li J Y. Molecular basis of plant architecture[J]. Annual Review of Plant Biology,2008,59(1):253-279.
[50]Xing Y Z,Zhang Q E. Genetic and molecular bases of rice yield[J]. Annual Review of Plant Biology,2010,61:421-442.
[51]Minakuchi K,Kameoka H,Yasuno N,et al. FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice[J]. Plant & Cell Physiology,2010,51(7):1127-1135.
[52]Miura K,Ikeda M,Matsubara A,et al. OsSPL14 promotes panicle branching and higher grain productivity in rice[J]. Nature Genetics,2010,42(6):545-549.
[53]Jiao Y Q,Wang Y H,Xue D W,et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nature Genetics,2010,42(6):541-U536.
[54]Li S Y,Zhao B R,Yuan D Y,et al. Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(8):3167-3172.
[55]Fan C C,Xing Y Z,Mao H L,et al. GS3,a major QTL for grain length and weight and minor QTL for grain width and thickness in rice,encodes a putative transmembrane protein[J]. Theoretical and Applied Genetics,2006,112(6):1164-1171.
[56]Mao H L,Sun S Y,Yao J L,et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(45):19579-19584.
[57]Shomura A,Izawa T,Ebana K,et al. Deletion in a gene associated with grain size increased yields during rice domestication[J]. Nature Genetics,2008,40(8):1023-1028.
[58]Song X J,Kuroha T,Ayano M,et al. Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight,yield,and plant biomass in rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(1):76-81.
[59]Wang S K,Li S,Liu Q,et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nature Genetics,2015,47(8):949-954.
[60]Wang S K,Wu K,Yuan Q B,et al. Control of grain size,shape and quality by OsSPL16 in rice[J]. Nature Genetics,2012,44(8):950-954.
[61]Zhang X J,Wang J F,Huang J,et al. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(52):21534-21539.
[62]Huang X Z,Qian Q,Liu Z B,et al. Natural variation at the DEP1 locus enhances grain yield in rice[J]. Nature Genetics,2009,41(4):494-497.
[63]Li M,Li X X,Zhou Z J,et al. Reassessment of the four yield-related genes Gn1a,DEP1,GS3,and IPA1 in rice using a CRISPR/Cas9 system[J]. Frontiers in Plant Science,2016,7:377.
[64]Gilbert L A,Horlbeck M A,Adamson B,et al. Genome-scale CRISPR-mediated control of gene repression and activation[J]. Cell,2014,159(3):647-661.
[65]Shalem O,Sanjana N E,Hartenian E,et al. Genome-scale CRISPR-Cas9 knockout screening in human cells[J]. Science,2014,343(6166):84-87.
[66]Chen B,Gilbert L A,Cimini B A,et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system[J]. Cell,2013,155(7):1479-1491.
[67]Hilton I B,DIppolito A M,Vockley C M,et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers[J]. Nature Biotechnology,2015,33(5):510-517.
[68]McKenna A,Findlay G M,Gagnon J A,et al. Whole-organism lineage tracing by combinatorial and cumulative genome editing[J]. Science,2016,353(6298):aaf7907.
[69]Hsu P D,Lander E S,Zhang F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell,2014,157(6):1262-1278.
[70]Hu X X,Wang C,Fu Y P,et al. Expanding the range of CRISPR/Cas9 genome editing in rice[J]. Molecular Plant,2016,9(6):943-945.
[71]Hu X X,Meng X B,Liu Q,et al. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice[J]. Plant Biotechnology Journal,2018,16(1):292-297.
[72]Kaya H,Mikami M,Endo A,et al. Highly specific targeted mutagenesis in plants using Staphylococcus aureus Cas9[J]. Scientific Reports,2016,6:26871.
[73]Waltz E. CRISPR-edited crops free to enter market,skip regulation[J]. Nature Biotechnology,2016,34(6):582.

相似文献/References:

[1]马旭俊,刘春娟,吕世博,等.绿色荧光蛋白基因在水稻遗传转化中的应用[J].江苏农业科学,2013,41(04):35.
[2]李岳峰,居立海,张来运,等.水分胁迫下丛枝菌根对水稻/绿豆间作系统 作物生长和氮磷吸收的影响[J].江苏农业科学,2013,41(04):58.
[3]崔月峰,孙国才,王桂艳,等.不同施氮水平和前氮后移措施对水稻产量 及氮素利用率的影响[J].江苏农业科学,2013,41(04):66.
[4]张其蓉,宋发菊,田进山,等.长江中下游稻区水稻区域试验品种抗稻瘟病鉴定与评价[J].江苏农业科学,2013,41(04):92.
[5]王麒,张小明,卞景阳,等.不同插秧密度对黑龙江省第二积温带水稻产量及产量构成的影响[J].江苏农业科学,2013,41(05):60.
 Wang Qi,et al.Effect of different transplanting density on yield and yield component of rice in second temperature zone of Heilongjiang Province[J].Jiangsu Agricultural Sciences,2013,41(10):60.
[6]张国良,张森林,丁秀文,等.基质厚度和含水量对水稻育秧的影响[J].江苏农业科学,2013,41(05):62.
 Zhang Guoliang,et al.Effects of substrate thickness and water content on growth of rice seedlings[J].Jiangsu Agricultural Sciences,2013,41(10):62.
[7]赵忠宝,朱清海.稻-蟹-鳅生态系统的能值分析[J].江苏农业科学,2013,41(05):349.
 Zhao Zhongbao,et al.Emergy analysis of paddy-crab-loach ecosystem[J].Jiangsu Agricultural Sciences,2013,41(10):349.
[8]杨红福,姚克兵,束兆林,等.甲氧基丙烯酸酯类杀菌剂对水稻恶苗病的田间药效[J].江苏农业科学,2014,42(12):166.
 Yang Hongfu,et al.Field efficacy of strobilurin fungicides against rice bakanae disease[J].Jiangsu Agricultural Sciences,2014,42(10):166.
[9]唐成,陈露,安敏敏,等.稻瘟病诱导水稻幼苗叶片氧化还原系统的特征谱变化[J].江苏农业科学,2014,42(12):141.
 Tang Cheng,et al.Characteristic spectral changes of redox homeostasis system in rice seedling leaves induced by rice blast[J].Jiangsu Agricultural Sciences,2014,42(10):141.
[10]万云龙.优质水稻—春甘蓝轮作高效栽培模式[J].江苏农业科学,2014,42(12):90.
 Wan Yunlong.Efficient cultivation mode of high quality rice-spring cabbage rotation[J].Jiangsu Agricultural Sciences,2014,42(10):90.
[11]马斯霜,白海波,惠建,等.CRISPR/Cas9技术及其在水稻和小麦遗传改良中的应用综述[J].江苏农业科学,2019,47(20):29.
 Ma Sishuang,et al.Application of CRISPR/Cas9 technology in rice and wheat genetic improvement:a review[J].Jiangsu Agricultural Sciences,2019,47(10):29.
[12]颜静宛,陈子强,周淑芬,等.利用CRISPR/Cas9系统创制水稻品种GW2基因的突变体[J].江苏农业科学,2024,52(3):73.
 Yan Jingwan,et al.Creation of mutants of GW2 gene in rice varieties using CRISPR/Cas9 system[J].Jiangsu Agricultural Sciences,2024,52(10):73.

备注/Memo

备注/Memo:
收稿日期:2019-01-16
基金项目:国家自然科学基金(编号:31871232);江苏省农业科技自主创新资金[编号:CX(18)2014];苏州市农业科学院科研基金[编号:KJ(18)301]。
作者简介:沈明晨(1993—),女,江苏盐城人,硕士,主要从事水稻遗传育种研究。E-mail:1285130620@qq.com。
通信作者:龚志云,博士,教授,主要从事水稻分子细胞与表观遗传学研究,E-mail:zygong@yzu.edu.cn;乔中英,硕士,研究员,主要从事水稻抗病遗传育种研究,E-mail:qiaozhongying@163.com。
更新日期/Last Update: 2019-05-20