|本期目录/Table of Contents|

[1]刘敬贤,黄亚群,陈景堂,等.基于高密度连锁图谱定位玉米株高QTL[J].江苏农业科学,2019,47(13):38-41.
 Liu Jingxian,et al.QTL mapping for plant height in maize based on high density linkage map[J].Jiangsu Agricultural Sciences,2019,47(13):38-41.
点击复制

基于高密度连锁图谱定位玉米株高QTL(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第47卷
期数:
2019年第13期
页码:
38-41
栏目:
生物技术
出版日期:
2019-07-31

文章信息/Info

Title:
QTL mapping for plant height in maize based on high density linkage map
作者:
刘敬贤 黄亚群 陈景堂 祝丽英 赵永锋 郭晋杰
河北农业大学农学院/国家玉米改良中心河北分中心,河北保定 071000
Author(s):
Liu Jingxianet al
关键词:
玉米株高穗位高穗位系数高密度连锁图谱
Keywords:
-
分类号:
S513.03
DOI:
-
文献标志码:
A
摘要:
为了解析株高性状的遗传基础,以X178和NX531为亲本构建的124份RIL群体为研究材料,基于高密度SNP标记构建的包含7 278个bin的bin-map连锁图谱,对辛集、保定2个地点RIL群体的株高、穗位高、穗位系数3个性状进行QTL定位分析,共检测到16个QTL位点,有9个QTL的表型贡献率大于10.00%。其中辛集检测到7个,单个QTL表型贡献率范围4.67%~13.94%;保定检测到9个,单个QTL表型贡献率范围0.35%~25.56%。在2个环境下检测到qEHX3和qEHB3的置信区间存在重叠。在第1连锁群上289.16~296.77 Mb发现控制株高的qPHB1和穗位高的qEHB1-2定位区间相邻。在bin1.07定位到的qPHX1-1区间内存在br2(brachytic2)基因,bin1.09~1.1定位到的qPHX1-2区段内存在d8(dwarf8)基因,bin3.07定位到的qEHX3区段内存在ccd8基因,这3个基因影响节间的伸长,与株高、穗位高的发育相关。该研究结果为株高相关性状QTL精细定位、克隆提供理论依据。
Abstract:
-

参考文献/References:

[1]Horner E S,Lutrick M C,Chapman W H,et al. Effect of recurrent selection for combining ability with a single-cross tester in maize[J]. Crop Science,1976,16(1):5-8.
[2]张泽民,贾长柱. 玉米株型对遗传增益的影响[J]. 遗传,1997,19(2):35-38.
[3]付志远,邵可可,陈德芝,等. 穗上节间数与玉米抗倒伏能力的相关性分析[J]. 河南农业大学学报,2011,42(2):149-154.
[4]兰进好,褚栋. 玉米株高和穗位高遗传基础的QTL剖析[J]. 遗传,2005,27(6):925-934.
[5]王铁固,马娟,张怀胜,等. 玉米穗位高的主基因+多基因的遗传模型分析[J]. 贵州农业科学,2012,40(4):10-13.
[6]郑德波,杨小红,李建生,等. 基于SNP标记的玉米株高及穗位高QTL定位[J]. 作物学报,2013,39(3):549-556.
[7]严建兵,汤华,黄益勤,等. 不同发育时期玉米株高QTL的动态分析[J]. 科学通报,2003,48(18):1959-1964.
[8]汤华,严建兵,黄益勤,等. 玉米5个农艺性状的QTL定位[J]. 遗传学报,2005,32(2):203-209.
[9]杨晓军,路明,张世煌,等. 玉米株高和穗位高的QTL定位[J]. 遗传,2008,30(11):1477-1486.
[10]何坤辉,常立国,崔婷婷,等. 多环境下玉米株高和穗位高的QTL定位[J]. 中国农业科学,2016,49(8):1443-1452.
[11]杨梅. 玉米株高QTL qPH3.2和qPH3.3的精细定位[D]. 武汉:华中农业大学, 2017:20-30.
[12]Zhou Z Q,Zhang C S,Zhou Y,et al. Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines[J]. BMC Genomics, 2016,17(1):178.
[13]Cui M,Jia B,Liu H H,et al. Genetic mapping of the leaf number above the primary ear and its relationship with plant height and flowering time in maize[J]. Frontiers in Plant Science,2017,8:1437.
[14]Zou G H,Zhai G W,Feng Q,et al. Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods[J]. Journal of Experimental Botany,2012,63(15):5451-5462.
[15]Zhang W Q,Zhang M C,Li Z H,et al. Dissection of the molecular genetic architecture of the ratio of ear to plant heights in response to ethylene by a RIL population with SNPs marker in maize[J]. Acta Physiologiae Plantarum,2017,39(6):142.
[16]Huang X E,Feng Q,Qian Q,et al. High-throughput genotyping by whole-genome resequencing[J]. Genome Research,2009,19(6):1068-1076.
[17]Zou J,Semagn K,Iqbal M,et al. Mapping QTLs controlling agronomic traits in the ‘Attila’בCDC go’ spring wheat population under organic management using 90K SNP array[J]. Crop Science,2017,57(1):365-377.
[18]Qi H K,Wang N,Qiao W Q,et al.Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of three plant morphological traits in upland cotton (Gossypium hirsutum L.)[J]. Euphytica,2017,213(4):83.
[19]Wang B B,Liu H,Liu Z P,et al.Identification of minor effect QTLs for plant architecture related traits using super high density genotyping and large recombinant inbred population in maize (Zea mays)[J]. BMC Plant Biology,2018,18(1):1-12.
[20]Sheridan W F. Maize developmental genetics:genes of morphogenesis[J]. Annu Rev Genet,1988,22(1):353-385.
[21]Guan J C,Koch K E,Suzuki M,et al. Diverse roles of strigolactone signaling in maize architecture and the uncoupling of a branching-specific subnetwork[J]. Physiologia Plantarum,2012,160(3):1303-1317.
[22]Teng F,Zhai L H,LiuR X,et al.ZmGA3ox2,a candidate gene for a major QTL,qPH3.1,for plant height in maize[J]. Plant Journal,2013,73(3):405-416.
[23]赖国荣,张静,刘函,等. 基于GBS构建玉米高密度遗传图谱及营养品质性状QTL定位[J]. 农业生物技术学报,2017,25(9):1400-1410.
[24]李清超,李永祥,杨钊钊,等. 基于多重相关RIL群体的玉米株高和穗位高QTL定位[J]. 作物学报,2013,39(9):1521-1529.
[25]李浩川,陈琼,杨继伟,等. 基于双单倍体群体的玉米株高和穗位高QTL分析[J]. 河南农业大学学报,2016,50(2):161-166.
[26]Li X P,Zhou Z J,Ding J Q,et al. Combined linkage and association mapping reveals QTL and candidate genes for plant and ear height in maize[J]. Frontiers in Plant Science,2016,7(833):1-11.
[27]Multani D S,Briggs S P,Chamberlin M A,et al. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants[J]. Science,2003,302(5642):81-84.
[28]Peng J,Richards D E,Hartley N M,et al. ‘Green revolution’ genes encode mutant gibberellin response modulators[J]. Nature,1999,400(6741):256-261.

相似文献/References:

[1]孙建伟.水涝胁迫对玉米细胞保护酶同工酶的影响[J].江苏农业科学,2013,41(04):85.
[2]刘荣,张卫建,齐华,等.密植型玉米“中单909”高产群体结构特征[J].江苏农业科学,2013,41(05):56.
 Liu Rong,et al.Study on high yield population structure of close planting maize cultivar “Zhongdan 909”[J].Jiangsu Agricultural Sciences,2013,41(13):56.
[3]沈浜凯,肖龙云,冯乃杰,等.黄腐酸和AM真菌对玉米幼苗抗旱性的影响[J].江苏农业科学,2013,41(05):64.
 Shen Bangkai,et al.Effects of fulvic acid and AM fungi on drought resistance of maize seedlings[J].Jiangsu Agricultural Sciences,2013,41(13):64.
[4]张金然,缑艳霞,孙丽鹏.固氮螺菌157对玉米、向日葵的促生长作用[J].江苏农业科学,2014,42(12):116.
 Zhang Jinran,et al.Effects of Azospirillum 157 on growth of maize and sunflower[J].Jiangsu Agricultural Sciences,2014,42(13):116.
[5]白小军,吴燕,牛艳,等.玉米中乙草胺和莠去津残留量GC-MS/MS分析法的建立[J].江苏农业科学,2014,42(11):334.
 Bai Xiaojun,et al().Establishment of GC-MS/MS analysis method of acetochlor and atrazine residues in maize[J].Jiangsu Agricultural Sciences,2014,42(13):334.
[6]邹晓威,王娜,刘芬,等.玉米抗病相关基因在玉米与玉米丝黑穗病菌、玉米黑粉病菌互作过程中的表达差异分析[J].江苏农业科学,2014,42(11):150.
 Zou Xiaowei,et al(0).Different expression of resistance-related genes between Sporisorium reilianum and Ustilago maydis interact with corn[J].Jiangsu Agricultural Sciences,2014,42(13):150.
[7]杨洪兴,陈静,陈艳萍.江苏省玉米机械化生产的发展及育种对策思考[J].江苏农业科学,2014,42(11):116.
 Yang Hongxing,et al().Development and breeding strategy of mechanized production of maize in Jiangsu Province[J].Jiangsu Agricultural Sciences,2014,42(13):116.
[8]张丽妍,霍剑锋,孟繁盛,等.不同肥料、施肥水平及施用方法对玉米产量、性状及效益的影响[J].江苏农业科学,2014,42(11):119.
 Zhang Liyan,et al (9).Effects of different fertilizers,fertilizer levels and fertilizing methods on yield,characters and benefit of maize[J].Jiangsu Agricultural Sciences,2014,42(13):119.
[9]王雷,崔震海,张立军.玉米C4型PEPC全长基因的克隆与表达载体构建[J].江苏农业科学,2014,42(11):26.
 Wang Lei,et al().Cloning and expression vector construction of full-length C4 type PEPC gene in maize[J].Jiangsu Agricultural Sciences,2014,42(13):26.
[10]雷恩,赵光明,刘艳红.不同稀释浓度松土保水剂对玉米营养生长的影响[J].江苏农业科学,2013,41(06):77.
 Lei En,et al.Effect of different dilutions of super absorbent polymer on vegetative growth of maize[J].Jiangsu Agricultural Sciences,2013,41(13):77.
[11]郑克志,李元,瞿会,等.玉米株高和穗位高的QTL定位[J].江苏农业科学,2015,43(05):61.
 Zheng Kezhi,et al.QTL mapping of plant height and ear position of maize[J].Jiangsu Agricultural Sciences,2015,43(13):61.
[12]胡雅,潘亮,徐辰武.玉米骨干亲本及其衍生系中Dwarf8基因的序列变异及与株高等性状的关联分析[J].江苏农业科学,2016,44(08):89.
 Hu Ya,et al.Sequence variation analysis of gene Dwarf8 and its association with plant height trait of maize elite inbred lines and its derivatives[J].Jiangsu Agricultural Sciences,2016,44(13):89.

备注/Memo

备注/Memo:
收稿日期:2018-04-05
基金项目:河北省科技计划(编号:16226323D-2);农作物种质资源保护项目(编号:2016-2017NWB036-0405)。
作者简介:刘敬贤(1990—),女,河北保定人,硕士研究生,主要从事玉米遗传育种研究。E-mail:liujingxian116@163.com。
通信作者:黄亚群,硕士,教授,主要从事玉米遗传育种研究。E-mail:hyqun@hebau.edu.cn。
更新日期/Last Update: 2019-07-05