|本期目录/Table of Contents|

[1]周琳,杨柳燕,潘琦,等.外源一氧化氮处理对山茶抗寒性的影响[J].江苏农业科学,2019,47(20):142-147.
 Zhou Lin,et al.Effects of exogenous nitric oxide (NO) on cold resistance of Camellia japonica[J].Jiangsu Agricultural Sciences,2019,47(20):142-147.
点击复制

外源一氧化氮处理对山茶抗寒性的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第47卷
期数:
2019年第20期
页码:
142-147
栏目:
园艺与林学
出版日期:
2019-11-18

文章信息/Info

Title:
Effects of exogenous nitric oxide (NO) on cold resistance of Camellia japonica
作者:
周琳1 杨柳燕1 潘琦1 张斌2 房婉萍3 朱旭君3 张永春1
1.上海市农业科学院林木果树研究所,上海 201106; 2.上海星源农业实验场,上海 201403; 3.南京农业大学,江苏南京 210095
Author(s):
Zhou Linet al
关键词:
山茶一氧化氮生理生化抗寒性
Keywords:
-
分类号:
S685.140.1
DOI:
-
文献标志码:
A
摘要:
以花鹤翎、六角大红茶花为材料,以硝普钠(SNP)为外源一氧化氮(NO)供体,研究外源NO对低温胁迫条件下山茶花生理特性的影响。结果表明,在正常生长条件下,外源NO对2个山茶花品种的叶绿素、可溶性糖、可溶性蛋白、游离脯氨酸(Pro)含量以及 O-2 · 生成速率影响不显著,但对超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)的活性略有提高。低温胁迫下,2个山茶花品种的叶绿素含量降低,可溶性糖、可溶性蛋白、Pro、过氧化氢(H2O2)、丙二醛(MDA)含量以及 O-2 · 生成速率显著增加,SOD、CAT、POD活性显著提高。低温胁迫下,外源NO处理显著减少了H2O2和膜脂过氧化物产物MDA的积累,显著提高了叶绿素、可溶性糖、可溶性蛋白含量以及SOD、CAT、POD活性。低温胁迫下,外源NO可通过提高山茶可溶性物质含量以及抗氧化酶活性,降低H2O2和MDA的积累,从而保护细胞膜结构的稳定性,最终减轻冷害胁迫对山茶花的伤害,增强其抗冷性。
Abstract:
-

参考文献/References:

[1]高继根. 山茶属植物主要原种彩色图集[M]. 杭州:浙江科学技术出版社,2005.
[2]蓝芳,梁雅仪,王晓峰,等. 高温高湿胁迫对大果山茶生理特性的影响[J]. 湖北农业科学,2017(9):1678-1682.
[3]彭邵锋,陆佳,陈永忠,等. 高温胁迫下21个山茶种质的生理生化响应[J]. 经济林研究,2016,34(3):121-125.
[4]王奎玲. 耐冬山茶种质资源研究[D]. 北京:北京林业大学,2006.
[5]Fancy N N,Bahlmann A K,Loake G J. Nitric oxide function in plant abiotic stress[J]. Plant Cell and Environment,2017,40(4):462-472.
[6]Sehrawat A,Gupta R,Deswal R. Nitric oxide-cold stress signalling cross-talk,evolution of a novel regulatory mechanism[J]. Proteomics,2013,13(12/13):1816-1835.
[7]Neill S J,Desikan R,Hancock J T. Nitric oxide signalling in plants[J]. New Phytologist,2003,159(1):11-35.
[8]Siddiqui M H,Al-Whaibi M H,basalah M O. Role of nitric oxide in tolerance of plants to abiotic stress[J]. Protoplasma,2011,248(3):447-455.
[9]吴旭红,吕成敏,冯晶旻. 外源一氧化氮(NO)对低温胁迫下南瓜幼苗氧化损伤的保护效应[J]. 草业学报,2016,25(12):161-169.
[10]Zhao M G,Chen L,Zhang L L,et al. Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis[J]. Plant Physiology,2009,151(2):755-767.
[11]杨美森,王雅芳,干秀霞,等. 外源一氧化氮对冷害胁迫下棉花幼苗生长、抗氧化系统和光合特性的影响[J]. 中国农业科学,2012,45(15):3058-3067.
[12]李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社,2000:105-263.
[13]Yemm E W,Willis A J. The estimation of carbohydrates in plant extracts by anthrone[J]. Biochemical journal,1954,57(3):508-514.
[14]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry,1976,72(1/2):248-254.
[15]王学奎. 植物生理生化实验原理和技术[M]. 2版.北京:高等教育出版社,2006:278-279.
[16]Wang A G,Luo G H. Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants[J]. Plant Physiology Communications,1990,26:55-57.
[17]刘俊,吕波,徐朗莱. 植物叶片中过氧化氢含量测定方法的改进[J]. 生物化学与生物物理进展,2000(5):548-551.
[18]张志良,瞿伟菁. 植物生理学实验指导[M]. 3版.台北:艺轩图书出版社,2009:274-276.
[19]Giannopolitis C N,Ries S K. Superoxide dismutases:Ⅰ. Occurrence in higher plants[J]. Plant Physiology,1977,59(2):309-314.
[20]Aebi H. Catalase in vitro[J]. Methods in Enzymology,1984,105:121-126.
[21]Kong F X,Hu W,Chao S Y,et al. Physiological responses of the lichen Xanthoparmelia mexicana to oxidative stress of SO2[J]. Environmental and Experimental Botany,1999,42(3):201-209.
[22]李国婧. 超氧阴离子的产生及其在植物体内作用的研究[J]. 生物技术世界,2012(4):24-25.
[23]Li X G,Meng Q W,Jiang G Q,et al. The susceptibility of cucumber and sweet pepper to chilling under low irradiance is related to energy dissipation and water-water cycle[J]. Photosynthetica,2003,41(2):259-265.
[24]许楠,孙广玉. 低温锻炼后桑树幼苗光合作用和抗氧化酶对冷胁迫的响应[J]. 应用生态学报,2009,20(4):761-766.
[25]马向丽,魏小红,龙瑞军,等. 外源一氧化氮提高一年生黑麦草抗冷性机制[J]. 生态学报,2005,25(6):1269-1274.
[26]王芳,李永生,彭云玲,等. 外源一氧化氮对玉米幼苗抗低温胁迫的影响[J]. 干旱地区农业研究,2017,35(4):270-275.
[27]陈志新,陈伟楠,胡增辉,等. 一氧化氮对盐胁迫下八宝景天叶片生理特性的影响[J]. 北京农学院学报,2018,33(3):1-6.
[28]Uchida A,Jagendorf A T,Hibino T,et al. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice[J]. Plant Science,2002,163(3):515-523.
[29]Arora D,Jain P,Singh N,et al. Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants[J]. Free Radical Research,2016,50(3):291-303.
[30]Ma Y,Zhang Y L,Lu J,et al. Roles of plant soluble sugars and their responses to plant cold stress[J]. African Journal of Biotechnology,2009,8(10):2004-2010.
[31]Knipp G,Honermeier B. Effect of water stress on proline accumulation of genetically modified potatoes (Solanum tuberosum L.) generating fructans[J]. Journal of Plant Physiology,2006,163(4):392-397.
[32]Sinha S,Kukreja B,Arora P,et al. The omics of cold stress responses in plants[M]//Elucidation of abiotic stress signaling in plants. New York:Springer,2015:143-194.
[33]Armengaud P,Thiery L,Buhot N,et al. Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features[J]. Physiologia Plantarum,2004,120(3):442-450.
[34]Chen J B,Wang S M,Jing R L,et al. Cloning the PvP5CS gene from common bean (Phaseolus vulgaris) and its expression patterns under abiotic stresses[J]. Journal of Plant Physiology,2009,166(1):12-19.
[35]杜卓涛,商桑,朱白婢,等. 外源NO对低温胁迫下苦瓜幼苗生长和几个生理指标的影响[J]. 热带作物学报,2016,37(3):482-487.
[36]牟雪姣,刘理想,孟鹏鹏,等. 外源NO缓解蝴蝶兰低温胁迫伤害的生理机制研究[J]. 西北植物学报,2015,35(5):978-984.
[37]王海波,黄雪梅,张昭其. 植物逆境胁迫中活性氧和钙信号的关系[J]. 北方园艺,2010(22):189-194.
[38]Hung K T,Chang C J,Kao C H. Paraquat toxicity is reduced by nitric oxide in rice leaves[J]. Journal of Plant Physiology,2002,159(2):159-166.
[39]Zhang F,Wang Y,Yang Y,et al. Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica[J]. Plant,Cell & Environment,2007,30(7):775-785.
[40]Shi Q,Ding F,Wang X,et al. Exogenous nitric oxide protect cucumber roots against oxidative stress induced by salt stress[J]. Plant Physiology and Biochemistry,2007,45(8):542-550.
[41]Zheng C,Jiang D,Liu F,et al. Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity[J]. Environmental and Experimental Botany,2009,67(1):222-227.

相似文献/References:

[1]方淑梅,梁喜龙,纪伟波,等.外源NO对盐碱胁迫下水稻幼苗生长抑制的缓解作用[J].江苏农业科学,2013,41(08):67.
 Fang Shumei,et al.Mitigative effect of exogenous nitric oxide on growth inhibition of rice seedlings under saline-alkali stress[J].Jiangsu Agricultural Sciences,2013,41(20):67.
[2]尹丹丹,薛泽云,徐迎春,等.外源一氧化氮对黄长筒石蒜子球发育的影响[J].江苏农业科学,2013,41(09):153.
 Yin Dandan,et al.Effect of exogenous nitric oxide on cormel development of Lycoris longituba var. flava[J].Jiangsu Agricultural Sciences,2013,41(20):153.
[3]蒋天仪,卓宇,唐敏,等.外源一氧化氮(NO)对铁皮石斛类原球茎生长及多糖积累的影响[J].江苏农业科学,2016,44(04):257.
 Jiang Tianyi,et al.Effects of exogenous nitric oxide(NO) on protocorm growth and polysaccharide accumulation of Dendrobium officinale[J].Jiangsu Agricultural Sciences,2016,44(20):257.
[4]韩丹,郭立泉.葎草多糖对D-半乳糖诱导小鼠模型的抗衰老作用[J].江苏农业科学,2015,43(12):253.
 Han Dan,et al.Anti-aging effects of polysaccharides from Humulus scandens (Lour.) Merr on aged mice induced by D-galactose[J].Jiangsu Agricultural Sciences,2015,43(20):253.
[5]马 光.外源一氧化氮对盐胁迫下大豆幼苗生理指标的影响[J].江苏农业科学,2015,43(07):96.
 Ma Guang.Effect of exogenous nitric oxide on physiological characteristics of soybean seedlings under salt stress[J].Jiangsu Agricultural Sciences,2015,43(20):96.
[6]吴晓丽,甘丽萍,钟彦.外源NO供体硝普钠对干旱胁迫下裸大麦幼苗光合特性、游离脯氨酸及抗氧化酶的影响[J].江苏农业科学,2015,43(05):85.
 Wu Xiaoli,et al.Effects of exogenous NO donor sodium nitroprusside on photosynthesis,free proline content and antioxidant enzyme activity in hulless barley under drought stress[J].Jiangsu Agricultural Sciences,2015,43(20):85.
[7]单长卷,代海芳,孙海丽,等.一氧化氮参与水杨酸对玉米幼苗根系抗旱性的调控[J].江苏农业科学,2016,44(08):133.
 Shan Changjuan,et al.Study on nitric oxide involved in regulation of drought tolerance of maize seedling roots by salicylic acid[J].Jiangsu Agricultural Sciences,2016,44(20):133.
[8]王华华,李焱,候俊杰.硝酸还原酶介导的一氧化氮对植物铝胁迫耐受性的增强作用[J].江苏农业科学,2016,44(12):465.
 Wang Huahua,et al.Potentiation of nitrate reductase-mediated nitric oxide to aluminum tolerance of plants[J].Jiangsu Agricultural Sciences,2016,44(20):465.
[9]王辉,孙耀清,杨乐,等.3种茶花叶片可溶性糖与可溶性蛋白含量的年变化[J].江苏农业科学,2017,45(11):105.
 Wang Hui,et al.Annual variation of soluble sugar and soluble protein content in three kinds of camellia leaves[J].Jiangsu Agricultural Sciences,2017,45(20):105.
[10]王华华,张杨阳,刘文文.铝胁迫下一氧化氮对大豆根生长抑制的缓解作用[J].江苏农业科学,2019,47(18):122.
 Wang Huahua,et al.Mitigating effect of nitrogen oxide on growth inhibition of soybean roots under aluminum stress[J].Jiangsu Agricultural Sciences,2019,47(20):122.

备注/Memo

备注/Memo:
收稿日期:2018-07-06
基金项目:中国博士后科学基金(编号:2019M651550);上海市农委产业体系建设专项[编号:沪农科产字(2018)第8号];上海市科技兴农项目(2015);江苏省农业科技自主创新资金[编号:CX(17)2018];国家茶叶产业技术体系项目(编号:CARS-19)。
作者简介:周琳(1989—),女,江苏无锡人,博士,主要从事花卉遗传育种研究。E-mail:zhoulin6816@126.com。
通信作者:张永春,研究员,主要从事花卉栽培和种质创新研究。E-mail:saasflower@163.com。
更新日期/Last Update: 2019-10-20