|本期目录/Table of Contents|

[1]陈军,周平,王朝海,等.马铃薯糖转运蛋白系统进化关系分析和顺式调控元件鉴定[J].江苏农业科学,2020,48(8):56-62.
 Chen Jun,et al.Phylogenetic analysis and identification of cis-regulatory element of potato (Solanum tuberosum L.) sugar transporters[J].Jiangsu Agricultural Sciences,2020,48(8):56-62.
点击复制

马铃薯糖转运蛋白系统进化关系分析和顺式调控元件鉴定(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第48卷
期数:
2020年第8期
页码:
56-62
栏目:
生物技术
出版日期:
2020-04-20

文章信息/Info

Title:
Phylogenetic analysis and identification of cis-regulatory element of potato (Solanum tuberosum L.) sugar transporters
作者:
陈军 周平 王朝海 陆燚 梁振娟 王宗明 吴显 李晓川
贵州省毕节市农业科学研究所,贵州毕节 551700
Author(s):
Chen Junet al
关键词:
马铃薯糖转运子基因组系统进化关系顺式调控元件
Keywords:
-
分类号:
S532.01
DOI:
-
文献标志码:
A
摘要:
利用Clustal和MEGA 6程序进行序列分析,建立了54个马铃薯糖转运子之间以及它们与其他物种中的同源蛋白的进化关系。利用PLACE程序鉴定了42个糖转运子的顺式调控元件。此研究结果有利于对马铃薯糖转运子加深理解,从而挑选出提高马铃薯经济性的位点。
Abstract:
-

参考文献/References:

[1]李晓川,周平,王朝海. 马铃薯糖转运蛋白家族的全基因组鉴定和表达分析[J]. 江苏农业科学,2017,45(12):24-27.
[2]Xu X,Pan S K,Cheng S F,et al. Genome sequence and analysis of the tuber crop potato[J]. Nature,2011,475:189-195
[3]Sievers F,Wilm A,Dineen D,et al. Fast,scalable generation of high-quality protein multiple sequence alignments using Clustal Omega[J]. Molecular Systems Biology,2011,7:539.
[4]Tamura K,Stecher G,Peterson D,et al. MEGA6:molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution,2013,30(12):2725-2729.
[5]Barker L,Kühn C,Weise A,et al. SUT2,a putative sucrose sensor in sieve elements[J]. The Plant Cell,2000,12(7):1153-1164.
[6]Kühn C,Franceschi V R,Schulz A,et al. Macromolecular trafficking indicated by localization and turnover of sucrose transporters in enucleate sieve elements[J]. Science,1997,275(534):1298-1300.
[7]Weise A,Barker L,Kühn C,et al. A new subfamily of sucrose transporters,SUT4,with low affinity/high capacity localized in enucleate sieve elements of plants[J]. The Plant Cell,2000,12(8):1345-1355.
[8]Reinders A,Schulze W,Kühn C,et al. Protein-protein interactions between sucrose transporters of different affinities colocalized in the same enucleate sieve element[J]. The Plant Cell,2002,14(7):1567-1577.
[9]Kühn C,Grof C P. Sucrose transporters of higher plants[J]. Current Opinion in Plant Biology,2010,13(3):288-298.
[10]Sauer N. Molecular physiology of higher plant sucrose transporters[J]. FEBS Letters,2007,581(12):2309-2317.
[11]Shiratake K. Genetics of sugar transporters[J]. Genes,Genomes,Genomics,2007,1:73-80
[12]Boorer K J,Loo D D,Frommer W B,et al. Transport mechanism of the cloned potato H+/sucrose cotransporter StSUT1[J]. The Journal of Biological Chemistry,1996,271(41):25139-25144.
[13]Chincinska I,Gier K,Krügel U,et al. Photoperiodic regulation of the sucrose transporter StSUT4 affects the expression of circadian-regulated genes and ethylene production[J]. Frontiers in Plant Science,2013,4:26.
[14]Buettner M. The arabidopsis sugar transporter (AtSTP) family:an update[J]. Plant Biology,2010,12(1):35-41.
[15]Reuscher S,Akiyama M,Yasuda T,et al. The sugar transporter inventory of tomato:Genome-Wide identification and expression analysis[J]. Plant and Cell Physiology,2014,55(6):1123-1141.
[16]Gear M L,McPhillips M L,Patrick J W,et al. Hexose transporters of tomato:molecular cloning,expression analysis and functional characterization[J]. Plant Molecular Biology,2000,44:687-697
[17]Sauer N,Friedlnder K,Grml-Wicke U. Primary structure,genomic organization and heterologous expression of a glucose transporter from Arabidopsis thaliana[J]. The EMBO Journal,1990,9(10):3045-3050.
[18]Fillion L,Ageorges A,Picaud S,et al. Cloning and expression of a hexose transporter gene expressed during the ripening of grape berry[J]. Plant Physiology,1999,120(4):1083-1094.
[19]Vignault C,Vachaud M,Cakir B,et al. VvHT1 encodes a monosaccharide transporter expressed in the conducting complex of the grape berry phloem[J]. Journal of Experimental Botany,2005,56(415):1409-1418.
[20]Hayes M A,Feechan A,Dry I B. Involvement of abscisic acid in the coordinated regulation of a stress-inducible hexose transporter (VvHT5) and a cell wall invertase in grapevine in response to biotrophic fungal infection[J]. Plant Physiology,2010,153(1):211-221.
[21]Norholm M H,Nour-Eldin H H,Brodersen P,et al. Expression of the arabidopsis high-affinity hexose transporter STP13 correlates with programmed cell death[J]. FEBS Letters,2006,580(9):2381-2387.
[22]Schofield R A,Bi Y M,Kant S,et al. Over-expression of STP13,a hexose transporter,improves plant growth and nitrogen use in Arabidopsis thaliana seedlings[J]. Plant Cell and Environment,2009,32(3):271-285.
[23]Hayes M A,Davies C,Dry I B. Isolation,functional characterization,and expression analysis of grapevine (Vitis vinifera L.) hexose transporters:differential roles in sink and source tissues[J]. J Exp Bot,2007,58:1985-1997
[24]McCurdy D W,Dibley S,Cahyanegara R,et al. Functional characterization and RNAi-mediated suppression reveals roles for hexose transporters in sugar accumulation by tomato fruit[J]. Molecular plant,2010,3(6):1049-1063.
[25]Buttner M,Truernit E,Baier K,et al. AtSTP3,a green leaf-specific,low affinity monosaccharide-H+ symporter of Arabidopsis thaliana[J]. Plant Cell and Environment,2000,23(2):175-184.
[26]Toyofuku K,Kasahara M,Yamaguchi J. Characterization and expression of monosaccharide transporters (OsMSTs) in rice[J]. Plant Cell Physiol,2000,41:94-947
[27]Schneidereit A,Scholz-Starke J,Büttner M. Functional characterization and expression analyses of the glucose-specific AtSTP9 monosaccharide transporter in pollen of Arabidopsis[J]. Plant Physiology,2003,133(1):182-190.
[28]Schneidereit A,Scholz-Starke J,Sauer N,et al. AtSTP11,a pollen tube-specific monosaccharide transporter in Arabidopsis[J]. Planta,2005,221(1):48-55.
[29]Truernit E,Stadler R,Baier K,et al. A male gametophyte-specific monosaccharide transporter in Arabidopsis[J]. The Plant Journal,1999,17(2):191-201.
[30]Scholz-Starke J,Büttner M,Sauer N. AtSTP6,a new pollen-specific H+-monosaccharide symporter from Arabidopsis[J]. Plant Physiology,2003,131(1):70-77.
[31]Kiyosue T,Abe H,Yamaguchi-Shinozaki K,et al. ERD6,a cDNA clone for an early dehydration-induced gene of Arabidopsis,encodes a putative sugar transporter[J]. Biochimica et Biophysica Acta,1998,1370(2):187-191.
[32]Quirino B F,Reiter W D,Amasino R D. One of two tandem Arabidopsis genes homologous to monosaccharide transporters is senescence-associated[J]. Plant Molecular Biology,2001,46(4):447-457.
[33]Yamada K,Osakabe Y,Mizoi J,et al. Functional analysis of an Arabidopsis thaliana abiotic stress-inducible facilitated diffusion transporter for monosaccharides[J]. The Journal of Biological Chemistry,2010,285(2):1138-1146.
[34]Reinders A,Panshyshyn J A,Ward J M. Analysis of transport activity of Arabidopsis sugar alcohol permease homolog AtPLT5[J]. The Journal of Biological Chemistry,2005,280(2):1594-1602.
[35]Klepek Y-S,Geiger D,Stadler R,et al. Arabidopsis POLYOL TRANSPORTER 5,a new member of the monosaccharide transporter-like superfamily,mediates H+-symport of numerous substrates,including myoinositol,glycerol,and ribose[J]. Plant Cell,2005,17:204-218
[36]Klepek Y S,Volke M,Konrad K R,et al. Arabidopsis thaliana POLYOL/MONOSACCHARIDE TRANSPORTERS 1 and 2:fructose and xylitol/H+ symporters in pollen and young xylem cells[J]. Journal of Experimental Botany,2010,61(2):537-550.
[37]Noiraud N,Maurousset L,Lemoine R. Identification of a mannitol transporter,AgMaT1,in celery phloem[J]. The Plant Cell,2001,13(3):695-705.
[38]Juchaux-Cachau M,Landouar-Arsivaud L,Pichaut J P,et al. Characterization of AgMaT2,a plasma membrane mannitol transporter from celery,expressed in phloem cells,including phloem parenchyma cells[J]. Plant Physiology,2007,145(1):62-74.
[39]Gao Z,Maurousset L,Lemoine R,et al. Cloning,expression,and characterization of sorbitol transporters from developing sour cherry fruit and leaf sink tissues[J]. Plant Physiology,2003,131(4):1566-1575.
[40]Watari J,Kobae Y,Yamaki S,et al. Identification of sorbitol transporters expressed in the phloem of apple source leaves[J]. Plant & Cell Physiology,2004,45(8):1032-1041.
[41]Ramsperger-Gleixner M,Geiger D,Hedrich R,et al. Differential expression of sucrose transporter and polyol transportergenes during maturation of common planta in companion cells[J]. Plant Physiol,2004,134:147-160
[42]Chauhan S,Forsthoefel N,Ran Y,et al. Na+/myo-inositol symporters and Na+/H+-antiport in Mesembryanthemum crystallinum[J]. The Plant Journal,2000,24(4):511-522.
[43]Schneider S,Beyhl D,Hedrich R,et al. Functional and physiological characterization of Arabidopsis INOSITOL TRANSPORTER1,a novel tonoplast-localized transporter for myo-inositol[J]. The Plant Cell,2008,20(4):1073-1087.
[44]Schneider S,Schneidereit A,Konrad K R,et al. Arabidopsis INOSITOL TRANSPORTER4 mediates high-affinity H+ symport of myoinositol across the plasma membrane[J]. Plant Physiology,2006,141(2):565-577.
[45]Schneider S,Schneidereit A,Udvardi P,et al. Arabidopsis INOSITOL TRANSPORTER2 mediates H+ symport of different inositol epimers and derivatives across the plasma membrane[J]. Plant Physiology,2007,145(4):1395-1407.
[46]Weber A,Servaites J C,Geiger D R,et al. Identification,purification,and molecular cloning of a putative plastidic glucose translocator[J]. The Plant Cell,2000,12(5):787-802.
[47]Cho M H,Lim H,Shin D H,et al. Role of the plastidic glucose translocator in the export of starch degradation products from the chloroplasts in Arabidopsis thaliana[J]. The New Phytologist,2011,190(1):101-112.
[48]Yin Y G,Kobayashi Y,Sanuki A,et al. Salinity induces carbohydrate accumulation and sugar-regulated starch biosynthetic genes in tomato (Solanum lycopersicum L. cv. ‘Micro-Tom’) fruits in an ABA- and osmotic stress-independent manner[J]. Journal of Experimental Botany,2010,61(2):563-574.
[49]Butowt R,Granot D,Rodríguez-García M I. A putative plastidic glucose translocator is expressed in heterotrophic tissues that do not contain starch,during olive (Olea europea L.) fruit ripening[J]. Plant & Cell Physiology,2003,44(11):1152-1161.
[50]Cao H,Guo S,Xu Y,et al. Reduced expression of a gene encoding a Golgi localized monosaccharide transporter (OsGMST1) confers hypersensitivity to salt in rice (Oryza sativa)[J]. Journal of Experimental Botany,2011,62(13):4595-4604.
[51]Wang H X,Weerasinghe R R,Perdue T D,et al. A golgi-localized hexose transporter is involved in heterotrimeric G protein-mediated early development in Arabidopsis[J]. Molecular Biology of the Cell,2006,17(10):4257-4269.
[52]Wormit A,Trentmann O,Feifer I,et al. Molecular identification and physiological characterization of a novel monosaccharide transporter from Arabidopsis involved in vacuolar sugar transport[J]. The Plant Cell,2006,18(12):3476-3490.
[53]Wingenter K,Schulz A,Wormit A,et al. Increased activity of the vacuolar monosaccharide transporter TMT1 alters cellular sugar partitioning,sugar signaling,and seed yield in Arabidopsis[J]. Plant Physiology,2010,154(2):665-677.
[54]Schulz A,Beyhl D,Marten I,et al. Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2[J]. Plant Journal,2011,68(1):129-136.
[55]Cho J I,Burla B,Lee D W,et al. Expression analysis and functional characterization of the monosaccharide transporters,OsTMTs,involving vacuolar sugar transport in rice (Oryza sativa)[J]. The New Phytologist,2010,186(3):657-668.
[56]Aluri S,Büttner M. Identification and functional expression of the Arabidopsis thaliana vacuolar glucose transporter 1 and its role in seed germination and flowering[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(7):2537-2542.

相似文献/References:

[1]王朝海,陈春艳,顾尚敬,等.不同覆土高度对马铃薯产量及其构成的影响[J].江苏农业科学,2013,41(04):101.
[2]石虎,杨永智,周云,等.马铃薯新品种青薯9号高效再生体系的建立[J].江苏农业科学,2013,41(05):14.
 Shi Hu,et al.Establishment of efficient regeneration system of new potato cultivar “Qingshu No.9”[J].Jiangsu Agricultural Sciences,2013,41(8):14.
[3]陈春艳,王朝海,白永生,等.不同稀释倍数代森锰锌防治马铃薯晚疫病的药效试验[J].江苏农业科学,2013,41(05):106.
 Chen Chunyan,et al.Control effect of different dilution multiple of mancozeb on potato late blight[J].Jiangsu Agricultural Sciences,2013,41(8):106.
[4]李成松,冯玉磊,坎杂,等.单行悬挂式马铃薯施肥种植机的研制[J].江苏农业科学,2013,41(06):369.
 Li Chengsong,et al.Development of potato fertilizing and planting machine of single-line and suspension type[J].Jiangsu Agricultural Sciences,2013,41(8):369.
[5]李珺,马力通.马铃薯淀粉体表达载体的构建及其转基因植物的培养[J].江苏农业科学,2013,41(08):22.
 Li Jun,et al.Construction of potato amyloplast expression vector and breeding of its genetically modified plants[J].Jiangsu Agricultural Sciences,2013,41(8):22.
[6]贺苗苗.温度预处理对不同品种马铃薯花药愈伤组织诱导率的影响[J].江苏农业科学,2013,41(09):32.
 He Miaomiao.Effect of temperature pretreatment on callus formation percentage of different varieties of potatoes[J].Jiangsu Agricultural Sciences,2013,41(8):32.
[7]王芳.密度和基质对马铃薯青薯9号脱毒微型薯产量的影响[J].江苏农业科学,2013,41(09):84.
 Wang Fang.Effects of planting density and stroma on potato yield of virus-free microtubers of “Qingshu No.9”[J].Jiangsu Agricultural Sciences,2013,41(8):84.
[8]李永俊,李平,赵希子,等.马铃薯花粉孕性鉴定方法[J].江苏农业科学,2013,41(10):82.
 Li YongJun,et al.Identification methods of potato pollen gestation properties[J].Jiangsu Agricultural Sciences,2013,41(8):82.
[9]刘凌云,包丽仙,卢丽丽,等.马铃薯脱毒原原种基质栽培研究概况[J].江苏农业科学,2013,41(11):89.
 Liu Lingyun,et al.Study overview of substrate culture of potato minituber[J].Jiangsu Agricultural Sciences,2013,41(8):89.
[10]栾春荣,苏彩霞,马小凤,等.“马铃薯/鲜食糯玉米—菜用大豆—冬菜”模式高效栽培技术[J].江苏农业科学,2014,42(02):112.
 Luan Chunrong,et al.High efficient cultivation techniques of “potato/fresh waxy corn-green soybean-preserved vegetables” mode[J].Jiangsu Agricultural Sciences,2014,42(8):112.
[11]李晓川,周平,王朝海.马铃薯糖转运蛋白家族的全基因组鉴定和表达分析[J].江苏农业科学,2017,45(12):24.
 Li Xiaochuan,et al.Genome identification and expression analysis of potato carbohydrate transporter family[J].Jiangsu Agricultural Sciences,2017,45(8):24.

备注/Memo

备注/Memo:
收稿日期:2019-03-25
基金项目:贵州省科技计划(编号:黔科合基础[2019]1002)、黔科合基础[2016]1003);现代农业产业技术体系建设专项(编号:CARS-10-ES23)。
作者简介:陈军(1971—),男,研究实习员,研究方向为马铃薯遗传育种。E-mail:jevenlee111@aliyun.com。
通信作者:李晓川,博士,研究实习员,研究方向为马铃薯遗传育种。E-mail:475383510@qq.com。
更新日期/Last Update: 2020-04-20