|本期目录/Table of Contents|

[1]程娟,何环,衡曦彤,等.微生物降解昭通褐煤提高游离腐殖酸含量[J].江苏农业科学,2020,48(17):296-301.
 Cheng Juan,et al.Microbial degradation of Zhaotong lignite to increase free humic acid content[J].Jiangsu Agricultural Sciences,2020,48(17):296-301.
点击复制

微生物降解昭通褐煤提高游离腐殖酸含量(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第48卷
期数:
2020年第17期
页码:
296-301
栏目:
资源与环境
出版日期:
2020-09-05

文章信息/Info

Title:
Microbial degradation of Zhaotong lignite to increase free humic acid content
作者:
程娟1 何环1 衡曦彤1 赵阳1 刘健2 石开仪3 曹清河4 李成果5
1.中国矿业大学化工学院,江苏徐州 221116; 2.山西晋城无烟煤矿业集团有限责任公司/
煤与煤层气共采国家重点实验室,山西晋城 048012; 3.六盘水师范学院化学与材料工程学院,贵州六盘水 553004;
4.江苏徐淮地区徐州农业科学研究所,江苏徐州 221011; 5.徐州快邦生物科技开发有限公司,江苏徐州 221011
Author(s):
Cheng Juanet al
关键词:
褐煤生物降解游离腐殖酸青霉菌降解工艺优化
Keywords:
-
分类号:
TQ536;S182
DOI:
-
文献标志码:
A
摘要:
筛选到1株对云南省昭通褐煤降解效果较好的菌株H3,经分子生物学鉴定,该菌株与青霉菌Penicillium griseopurpureum的相似度为96%。通过正交试验筛选H3菌株生物降解昭通褐煤产游离腐殖酸的主要影响因素,结果表明,煤样粒度会明显影响H3菌株对煤的生物降解,并且当粒度小于0.074 mm、反应温度为30 ℃、反应时间为7 d时,菌株H3对褐煤的降解效果最好,经降解后褐煤中游离腐殖酸含量为70.34%,提高35.87%,降解率达到56.25%。通过工业分析、X射线衍射仪(XRD)、傅里叶红外光谱仪(FT-IR)分析了微生物降解前后褐煤性质的变化,结果表明经H3菌株降解后昭通褐煤的水分和固定碳含量略有上升,而挥发分和灰分含量略有下降,煤中一部分芳香环可能被真菌破坏,使其微晶结构发生变化。同时,经过微生物降解后的褐煤,部分碳碳双键和碳氮单键消失,说明原煤部分官能团被破坏。
Abstract:
-

参考文献/References:

[1]张莉萍,黑大伟. 低阶煤提质技术现状及完善途径[J]. 化工管理,2017,24:137.
[2]张传祥,张效铭,程敢. 褐煤腐殖酸提取技术及应用研究进展[J]. 洁净煤技术,2018,24(1):6-12.
[3]Valero N O,GómezI L C,Guerra M P,et al. Production of humic substances through coal-solubilizing bacteria[J]. Brazilian Journal of Microbiology,2014,45(3):911-918.
[4]Can Y,Qiao X,Akimbekov N S,et al. The solubilization of lignite by selective strains of bacteria[J]. Eurasian Journal of Ecology,2019,59(2):51-59.
[5]Yang Y,Yang J S,Li B Z,et al. An esterase from Penicillium decumbens P6 involved in lignite depolymerization[J]. Fuel,2018,214:416-422.
[6]Miszkiewicz H,Bielecki S,Kadubowski S. Biosolubilization of polish chemically oxidated brown coal[J]. Engineering and Protection of Environment,2016,19(1):97-108.
[7]Bao Y,Huang H P,He D S. Microbial enhancing coal-bed methane generation potential,constraints and mechanism-a mini-review[J]. Journal of Natural Gas Science and Engineering,2016,35:68-78.
[8]Mishra S,Akcil A,Panda S,et al. Effect of span-80 and ultrasonication on biodesulphurization of lignite by Rhodococcus erythropolis:lab to semi-pilot scale tests[J]. Minerals Engineering,2018,119:183-190.
[9]Kang H L,Liu X R,Zhang Y W,et al. Bacteria solubilization of shenmu lignite:influence of surfactants and characterization of the biosolubilization products[J]. Energy Sources,Part A:Recovery,Utilization,and Environmental Effects,2019:1-19.
[10]Sabar M A,Ali M I,Fatima N,et al. Degradation of low rank coal by Rhizopus oryzae isolated from a Pakistani coal mine and its enhanced releases of organic substances[J]. Fuel,2019,253:257-265.
[11]尹艳. 平庄褐煤的微生物降解转化研究[D]. 淮南:安徽理工大学,2013.
[12]钟世霞,徐玉新,骆洪义,等. 超声波活化风化煤腐殖酸的影响研究[J]. 山东农业大学学报(自然科学版),2014,45(1):6-9.
[13]王洪富,高进华,李昆仑,等. 腐殖酸活化原料指标评价研究[J]. 磷肥与复肥,2019,34(6):28-30.
[14]黄莹,纪仁飞,陈艳红,等. 一株红树内生真菌的形态学及28S rDNA序列鉴定[J]. 激光生物学报,2017,26(1):73-77.
[15]李非杨. 风化煤的微生物液化工艺研究[D]. 郑州:郑州大学,2018.
[16]冯晓霄. 新疆低价煤微生物液化研究[D]. 乌鲁木齐:新疆大学,2014.
[17]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T 35107—2017矿物源腐殖酸肥料中可溶性腐殖酸含量的测定[S]. 北京:中国标准出版社,2018.
[18]Wang S Q,Tang Y G,Schobert H H,et al. FTIR and 13C NMR investigation of coal component of late permian coals from southern China[J]. Energy Fuels,2011,25(12):5672-5677.
[19]石开仪,何环,李志. 白腐真菌S.commne对昭通褐煤生物液化研究[J]. 煤炭技术,2016,35(9):276-278.
[20]Haider R,Ghauri M A,Akhtar k. Isolation of coal degrading fungus from drilled core coal sample and effect of prior fungal pretreatment on chemical attributes of extracted humic acid[J]. Geomicrobiology Journal,2015,32(10):944-953.
[21]Jiang J Y,Yang W H,Cheng Y P,et al. Molecular structure characterization of middle-high rank coal via XRD,Raman and FTIR spectroscopy:implications for coalifcation[J]. Fuel,2019,239:559-572.
[22]Ahmeda M A,Blesa M J,Juan R,et al. Characterisation of an Egyptian coal by Mossbauer and FT-IR spectroscopy[J]. Fuel,2003,82(14):1825-1829.
[23]Baysal M,Yürüm A,Yildiz B,et al. Structure of some western Anatolia coals investigated by FTIR,Raman, 13C solid state NMR,spectroscopy and X-ray diffraction[J]. International Journal of Coal Geology,2016,163:166-176.
[24]Choudhury R,Gupta U N,Waanders F B,et al. A multi-analytical study on the sulphur components in some high sulphur Indian Tertiary coals[J]. Arabian Journal of Geosciences,2016,9:100.
[25]Qin Z H,Chen H,Yan Y J,et al. FTIR quantitative analysis upon solubility of carbon disulfide/N-methyl-2-pyrrolidinone mixed solvent to coal petrographic constituents[J]. Fuel Processing Technology,2015,133:14-19.
[26]He X Q,Liu X F,Nie B S,et al. FTIR and Raman spectroscopy characterization of functional groups in various rank coals[J]. Fuel,2017,206:555-563.
[27]Cepus V,Borth M,Seit M. IR spectroscopic characterization of lignite as a tool to predict the product range of catalytic decomposition[J]. International Journal of Clean Coal and Energy,2016,5:13-22.
[28]Cui X,Li X L,Li Y M,et al. Evolution mechanism of oxygen functional groups during pyrolysis of Datong coal[J]. Journal of Thermal Analysis Calorimetry,2017,129(2):1169-1180.

相似文献/References:

[1]季丽,吴伟.氟乐灵降解菌株的分离鉴定及降解特性研究[J].江苏农业科学,2016,44(03):390.
 Ji Li,et al.Study on isolation, identification and degradation characteristics of trifluralin-degrading bacteria[J].Jiangsu Agricultural Sciences,2016,44(17):390.
[2]李依韦,薛兰兰.鸡蛋中雌激素快速降解体系的研究[J].江苏农业科学,2013,41(10):260.
 Li Yiwei,et al.Study on rapid degradation system of estrogen in egg samples[J].Jiangsu Agricultural Sciences,2013,41(17):260.
[3]李俊刚,姜立春,马家俊.高效烟碱降解菌A4发酵条件优化[J].江苏农业科学,2016,44(05):431.
 Li Jungang,et al.Optimization of fermentation condition of efficient nicotine degradation bacterium strain A4[J].Jiangsu Agricultural Sciences,2016,44(17):431.
[4]胡秀虹,张廷辉,黄剑.阿维菌素降解菌株AW1-18的生长特性及降解活性[J].江苏农业科学,2016,44(05):447.
 Hu Xiuhong,et al.Growth characteristics and degradation activities of abamectin-degrading bacterium AW1-18[J].Jiangsu Agricultural Sciences,2016,44(17):447.
[5]李晓楼,赵燕.1株噻吩磺隆降解菌(Pseudomonas syringae LXL-3)的分离及降解特性[J].江苏农业科学,2016,44(01):369.
 Li Xiaolou,et al.Isolation and degradation characteristics of Pseudomonas syringae strain LXL-3 with thifensulfuron-methyl degradation capacity[J].Jiangsu Agricultural Sciences,2016,44(17):369.
[6]梁文涓,牛明芬,武肖媛,等.2株四氯联苯降解菌的分离及鉴定[J].江苏农业科学,2015,43(12):383.
 Liang Wenjuan,et al.Isolation and identification of two 3,3′,4,4′-tetrachlorobiphenyl degrading strains[J].Jiangsu Agricultural Sciences,2015,43(17):383.
[7]万金保,邬容伟,邱起地,等.序批式生物膜反应器处理养猪废水降解细菌特性[J].江苏农业科学,2016,44(12):480.
 Wan Jinbao,et al.Study on bacterial characteristics in SBBR during swine wastewater treatment[J].Jiangsu Agricultural Sciences,2016,44(17):480.
[8]张雪娜,贾海滨,张丽秀,等.4环HMW-PAHs降解菌的筛选、鉴定及降解特性[J].江苏农业科学,2017,45(15):282.
 Zhang Xuena,et al.Screening, identification and degradation characteristics of 4-ring HMW-PAHs degrading bacteria[J].Jiangsu Agricultural Sciences,2017,45(17):282.
[9]刘长风,李欣燕,贾春云,等.芘对毛霉胞外聚合物质特性的影响[J].江苏农业科学,2019,47(06):267.
 Liu Changfeng,et al.Effects of pyrene on characteristics of extracellular polymeric substance from Mucor mucedo[J].Jiangsu Agricultural Sciences,2019,47(17):267.
[10]郭宾会.植物内生菌的生态学作用与天然产物研究现状及展望[J].江苏农业科学,2019,47(20):13.
 Guo Binhui.Current status and prospects of ecological roles and natural products of endophytes in plants[J].Jiangsu Agricultural Sciences,2019,47(17):13.

备注/Memo

备注/Memo:
收稿日期:2019-10-18
基金项目:徐州市政策引导类计划(科技合作)(编号:KC18245)。
作者简介:程娟(1996—),女,四川南充人,硕士研究生,主要从事矿源腐殖酸生物提取相关研究。E-mail:854272991@qq.com。
通信作者:何环,博士,副教授,主要从事煤炭生物转化相关研究,E-mail:hehuan6819@cumt.edu.cn;曹清河,博士,研究员,主要从事甘薯种质资源相关研究,E-mail:caoqinghe@jaas.ac.cn。
更新日期/Last Update: 2020-09-05