|本期目录/Table of Contents|

[1]金雪莲,姚槐应,樊昊心.土壤硝化作用的温度响应综述[J].江苏农业科学,2020,48(20):8-16.
 Jin Xuelian,et al.Response of temperature to soil nitrification:a review[J].Jiangsu Agricultural Sciences,2020,48(20):8-16.
点击复制

土壤硝化作用的温度响应综述(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第48卷
期数:
2020年第20期
页码:
8-16
栏目:
专论与综述
出版日期:
2020-10-20

文章信息/Info

Title:
Response of temperature to soil nitrification:a review
作者:
金雪莲123姚槐应124樊昊心4
1.中国科学院城市环境与健康重点实验室/中国科学院城市环境研究所,福建厦门 361021; 2.中国科学院宁波城市环境观测
研究站,浙江宁波 315800; 3.中国科学院大学,北京 100049; 4.武汉工程大学环境生态与生物工程学院,湖北武汉 430205
Author(s):
Jin Xuelianet al
关键词:
硝化作用温度氨氧化古菌氨氧化细菌N2O全球变暖
Keywords:
-
分类号:
S154
DOI:
-
文献标志码:
A
摘要:
硝化作用是土壤氮循环的核心环节,在农业系统中直接影响肥料的使用效率。温度是影响硝化作用的主要因素。全球变暖造成的影响不断加深,清晰认识土壤硝化作用的温度变化响应特征对预测全球变暖背景下土壤生态系统营养元素循环具有重要的指导意义。从土壤硝化速率温度响应特征、硝化微生物活性、群落结构的温度响应、潜在机制、土壤硝化作用温度响应的不确定性等方面对土壤硝化作用的温度响应的研究现状进行分析和总结。后续研究可从以下几个方面进行:(1)探索硝化微生物和硝化作用的热适应性及其机制;(2)探索复杂环境因子气候变化因子对土壤硝化作用温度响应特征的影响;(3)在大尺度范围内建立土壤硝化作用的温度响应与硝化微生物的群落特征的联系,同时引入模型评估硝化微生物N2O排放对全球变暖的反馈作用,进而预测气候变化趋势。
Abstract:
-

参考文献/References:

[1]Galloway J N,Townsend A R,Erisman J W,et al. Transformation of the nitrogen cycle:recent trends,questions,and potential solutions[J]. Science,2008,320(5878):889-892.
[2]Li Y Y,Chapman S J,Nicol G W,et al. Nitrification and nitrifiers in acidic soils[J]. Soil Biology & Biochemistry,2018,116:290-301.
[3]Prosser J I. Soil nitrifiers and nitrification[M]. Washington:Amer Soc Microbiology,2011:347-383.
[4]Goedde M,Conrad R. Immediate and adaptational temperature effects on nitric oxide production and nitrous oxide release from nitrification and denitrification in two soils[J]. Biology and Fertility of Soils,1999,30(1/2):33-40.
[5]Robertson G P,Tiedje J M. Nitrous-oxide sources in aerobic soils-nitrification,denitrification and other biological processes[J]. Soil Biology & Biochemistry,1987,19(2):187-193.
[6]Webster E A,Hopkins D W. Contributions from different microbial processes to N2O emission from soil under different moisture regimes[J]. Biology and Fertility of Soils,1996,22(4):331-335.
[7]Wrage N,Velthof G L,Laanbroek H J,et al. Nitrous oxide production in grassland soils:assessing the contribution of nitrifier denitrification[J]. Soil Biology & Biochemistry,2004,36(2):229-236.
[8]Galloway J N,Dentener F J,Capone D G,et al. Nitrogen cycles:past,present,and future[J]. Biogeochemistry,2004,70(2):153-226.
[9]Daims H,Lebedeva E V,Pjevac P,et al. Complete nitrification by nitrospira bacteria[J]. Nature,2015,528(7583):504-509.
[10]Kuypers M M M. A division of labour combined[J]. Nature,2015,528(7583):487-488.
[11]van Kessel M,Speth D R,Albertsen M,et al. Complete nitrification by a single microorganism[J]. Nature,2015,528(7583):555-559.
[12]He J Z,Zhang L M. Advances in ammonia-oxidizing microorganisms and global nitrogen cycle[J]. Acta Ecologica Sinica,2009,29(1):406-415.
[13]Taylor A E,Giguere A T,Zoebelein C M,et al. Modeling of soil nitrification responses to temperature reveals thermodynamic differences between ammonia-oxidizing activity of archaea and bacteria[J]. The ISME Journal,2017,11(4):896-908.
[14]Martens-Habbena W,Berube P M,Urakawa H,et al. Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria[J]. Nature,2009,461(7266):976-979.
[15]Kuypers M M M. Microbiology a fight for scraps of ammonia[J]. Nature,2017,549(7671):162-163.
[16]Prosser J I,Hink L,Gubry-Rangin C,et al. Nitrous oxide production by ammonia oxidizers:physiological diversity,niche differentiation and potential mitigation strategies[J]. Global Change Biology,2019,26(1):103-118.
[17]Larsen K S,Andresen L C,Beier C,et al. Reduced N cycling in response to elevated CO2,warming,and drought in a danish heathland:synthesizing results of the climaite project after two years of treatments[J]. Global Change Biology,2011,17(5):1884-1899.
[18]Grundmann G L,Renault P,Rosso L,et al. Differential-effects of soil-water content and temperature on nitrification and aeration[J]. Soil Science Society of America Journal,1995,59(5):1342-1349.
[19]Baer S E,Connelly T L,Sipler R E,et al. Effect of temperature on rates of ammonium uptake and nitrification in the western coastal arctic during winter,spring,and summer[J]. Global Biogeochemical Cycles,2014,28(12):1455-1466.
[20]Niboyet A,Roux L X,Dijkstra P,et al. Testing interactive effects of global environmental changes on soil nitrogen cycling[J]. Ecosphere,2011,2(5):UNSP 56.
[21]Osborne B B,Baron J S,Wallenstein M D. Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats[J]. Frontiers of Earth Science,2016,10(1):1-12.
[22]Hatzenpichler R. Diversity,physiology,and niche differentiation of ammonia-oxidizing archaea[J]. Applied and Environmental Microbiology,2012,78(21):7501-7510.
[23]Gubry-Rangin C,Novotnik B,Mandic-Mulec I,et al. Temperature responses of soil ammonia-oxidising archaea depend on pH[J]. Soil Biology & Biochemistry,2017,106:61-68.
[24]Cao H L,Jean-Christophe A,Gu J D. Global ecological pattern of ammonia-oxidizing archaea[J]. PLoS One,2013,8(2):e52853.
[25]Zhang Q,Li Y,He Y,et al. Elevated temperature increased nitrification activity by stimulating AOB growth and activity in an acidic paddy soil[J]. Plant and Soil,2019,445:71-83.
[26]Stark J M. Modeling the temperature response of nitrification[J]. Biogeochemistry,1996,35(3):433-445.
[27]Schipper L A,Hobbs J K,Rutledge S,et al. Thermodynamic theory explains the temperature optima of soil microbial processes and high Q10 values at low temperatures[J]. Global Change Biology,2014,20(11):3578-3586.
[28]Mahendrappa M K,Smith R L,Christiansen A T. Nitrifying organisms affected by climatic region in western United States[J]. Soil Science Society of America Proceedings,1966,30(1):60-62.
[29]Malhi S S,McGill W B. Nitrification in 3 alberta soils - effect of temperature,moisture and substrate concentration[J]. Soil Biology & Biochemistry,1982,14(4):393-399.
[30]Stark J M,Firestone M K. Kinetic characteristics of ammonium-oxidizer communities in a California oak woodland-annual grassland[J]. Soil Biology & Biochemistry,1996,28(10/11):1307-1317.
[31]Ouyang Y,Norton J M,Stark J M. Ammonium availability and temperature control contributions of ammonia oxidizing bacteria and archaea to nitrification in an agricultural soil[J]. Soil Biology & Biochemistry,2017,113:161-172.
[32]Shen J P,Zhang L M,Di H J,et al. A review of ammonia-oxidizing bacteria and archaea in Chinese soils[J]. Frontiers in Microbiology,2012,3:1-7.
[33]Norton J M,Klotz M G,Stein L Y,et al. Complete genome sequence of nitrosospira multiformis,an ammonia-oxidizing bacterium from the soil environment[J]. Applied and Environmental Microbiology,2008,74(11):3559-3572.
[34]Rice M C,Norton J M,Valois F,et al. Complete genome of Nitrosospira briensis C-128,an ammonia-oxidizing bacterium from agricultural soil[J]. Standards in Genomic Sciences,2016,11:46.
[35]Nakagawa T,Takahashi R. Nitrosomonas stercoris sp nov.,a chemoautotrophic ammonia-oxidizing bacterium tolerant of high ammonium isolated from composted cattle manure[J]. Microbes and Environments,2015,30(3):221-227.
[36]Jones R D,Morita R Y,Koops H P,et al. A new marine ammonium-oxidizing bacterium,Nitrosomonas cryotolerans sp. nov[J]. Canadian Journal of Microbiology,1988,34(10):1122-1128.
[37]Groeneweg J,Sellner B,Tappe W. Ammonia oxidation in nitrosomonas at NH3 concentrations near km:effects of pH and temperature[J]. Water Research,1994,28(12):2561-2566.
[38]Jiang Q Q,Bakken L R. Comparison of nitrosospira strains isolated from terrestrial environments[J]. FEMS Microbiology Ecology,1999,30(2):171-186.
[39]de la Torre J R,Walker C B,Ingalls A E,et al. Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol[J]. Environmental Microbiology,2008,10(3):810-818.
[40]Kim J G,Jung M Y,Park S J,et al. Cultivation of a highly enriched ammonia-oxidizing archaeon of thaumarchaeotal group Ⅰ. 1b from an agricultural soil[J]. Environmental Microbiology,2012,14(6):1528-1543.
[41]Jung M Y,Islam M A,Gwak J H,et al. Nitrosarchaeum koreense gen. Nov.,sp. nov.,an aerobic and mesophilic,ammonia-oxidizing archaeon member of the phylum Thaumarchaeota isolated from agricultural soil[J]. International Journal of Systematic and Evolutionary Microbiology,2018,68(10):3084-3095.
[42]Jung M Y,Park S J,Kim S J,et al. A mesophilic,autotrophic,ammonia-oxidizing archaeon of thaumarchaeal group Ⅰ. 1a cultivated from a deep oligotrophic soil horizon[J]. Applied and environmental microbiology,2014,80(12):3645-3655.
[43]Tourna M,Stieglmeier M,Spang A,et al. Nitrososphaera viennensis,an ammonia oxidizing archaeon from soil[J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108(20):8420-8425.
[44]Lehtovirta-Morley L E,Stoecker K,Vilcinskas A,et al. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil[J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108(38):15892-15897.
[45]Lehtovirta-Morley L E,Ross J,Hink L,et al. Isolation of ‘candidatus nitrosocosmicus franklandus’,a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration[J]. FEMS Microbiology Ecology,2016,92(5):1-10.
[46]Lehtovirta-Morley L E,Ge C R,Ross J,et al. Characterisation of terrestrial acidophilic archaeal ammonia oxidisers and their inhibition and stimulation by organic compounds[J]. FEMS Microbiology Ecology,2014,89(3):542-552.
[47]Pearson A,Huang Z,Ingalls A E,et al. Nonmarine crenarchaeol in nevada hot springs[J]. Applied and Environmental Microbiology,2004,70(9):5229-5237.
[48]Pearson A,Pi Y D,Zhao W D,et al. Factors controlling the distribution of archaeal tetraethers in terrestrial hot springs[J]. Applied and Environmental Microbiology,2008,74(11):3523-3532.
[49]Duan P P,Wu Z,Zhang Q Q,et al. Thermodynamic responses of ammonia-oxidizing archaea and bacteria explain N2O production from greenhouse vegetable soils[J]. Soil Biology & Biochemistry,2018,120:37-47.
[50]Alves R J E,Kerou M,Zappe A,et al. Ammonia oxidation by the arctic terrestrial thaumarchaeote Candidatus Nitrosocosmicus arcticus is stimulated by increasing temperatures[J]. Frontiers in Microbiology,2019,10:16.
[51]Alves R J E,Wanek W,Zappe A,et al. Nitrification rates in arctic soils are associated with functionally distinct populations of ammonia-oxidizing archaea[J]. ISME Journal,2013,7(8):1620-1631.
[52]Jacquemet A,Barbeau J,Lemiegre L,et al. Archaeal tetraether bipolar lipids:structures,functions and applications[J]. Biochimie,2009,91(6):711-717.
[53]Kozlowski J A,Stieglmeier M,Schleper C,et al. Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota[J]. ISME Journal,2016,10(8):1836-1845.
[54]Stahl D A,de la Torre J R. Physiology and diversity of ammonia-oxidizing archaea[J]. Annual Reviews of Microbiology,2012,66:83-101.
[55]Martens-Habbena W,Qin W,Horak R E A,et al. The production of nitric oxide by marine ammonia-oxidizing archaea and inhibition of archaeal ammonia oxidation by a nitric oxide scavenger[J]. Environmental Microbiology,2015,17(7):2261-2274.
[56]Qin W,Amin S A,Martens-Habbena W,et al. Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(34):12504-12509.
[57]Qin W,Meinhardt K A,Moffett J W,et al. Influence of oxygen availability on the activities of ammonia-oxidizing archaea[J]. Environmental Microbiology Reports,2017,9(3):250-256.
[58]Jung M Y,Park S J,Min D,et al. Enrichment and characterization of an autotrophic ammonia-oxidizing archaeon of mesophilic crenarchaeal group Ⅰ. 1a from an agricultural soil[J]. Applied and environmental microbiology,2011,77(24):8635-8647.
[59]Jung M Y,Well R,Min D,et al. Isotopic signatures of N2O produced by ammonia-oxidizing archaea from soils[J]. ISME Journal,2014,8(5):1115-1125.
[60]Jung M Y,Kim J G,Damste J S S,et al. A hydrophobic ammonia-oxidizing archaeon of the Nitrosocosmicus clade isolated from coal tar-contaminated sediment[J]. Environmental Microbiology Reports,2016,8(6):983-992.
[61]Konneke M,Bernhard A E,de la Torre J R,et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon[J]. Nature,2005,437(7058):543-546.
[62]Sauder L A,Albertsen M,Engel K,et al. Cultivation and characterization of Candidatus Nitrosocosmicus exaquare,an ammonia-oxidizing archaeon from a municipal wastewater treatment system[J]. ISME Journal,2017,11(5):1142-1157.
[63]Stieglmeier M,Mooshammer M,Kitzler B,et al. Aerobic nitrous oxide production through n-nitrosating hybrid formation in ammonia-oxidizing archaea[J]. ISME Journal,2014,8(5):1135-1146.
[64]Jones R D,Morita R Y. Low-temperature growth and whole-cell kinetics of a marine ammonium oxidizer[J]. Marine Ecology Progress Series,1985,21(3):239-243.
[65]Tourna M,Freitag T E,Nicol G W,et al. Growth,activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms[J]. Environmental Microbiology,2008,10(5):1357-1364.
[66]Szukics U,Abell G C J,Hoedl V,et al. Nitrifiers and denitrifiers respond rapidly to changed moisture and increasing temperature in a pristine forest soil[J]. FEMS Microbiology Ecology,2010,72(3):395-406.
[67]Taylor A E,Zeglin L H,Wanzek T A,et al. Dynamics of ammonia-oxidizing archaea and bacteria populations and contributions to soil nitrification potentials[J]. ISME Journal,2012,6(11):2024-2032.
[68]Lu X,Nicol G W,Neufeld J D. Differential responses of soil ammonia-oxidizing archaea and bacteria to temperature and depth under two different land uses[J]. Soil Biology & Biochemistry,2018,120:272-282.
[69]Hooper A B,Terry K R. Hydroxylamine oxidoreductase of Nitrosomonas production of nitric-oxide from hydroxylamine[J]. Biochimica Et Biophysica Acta,1979,571(1):12-20.
[70]Kozlowski J A,Price J,Stein L Y. Revision of N2O-producing pathways in the ammonia-oxidizing bacterium Nitrosomonas europaea ATCC 19718[J]. Applied and Environmental Microbiology,2014,80(16):4930-4935.
[71]Arp D J,Stein L Y. Metabolism of inorganic n compounds by ammonia-oxidizing bacteria[J]. Critical Reviews in Biochemistry and Molecular Biology,2003,38(6):471-495.
[72]Anderson I C,Poth M,Homstead J,et al. A comparison of NO and N2O production by the autotrophic nitrifier Nitrosomonas europaea and the heterotrophic nitrifier Alcaligenes faecalis[J]. Applied and Environmental Microbiology,1993,59(11):3525-3533.
[73]Hink L,Lycus P,Gubry-Rangin C,et al. Kinetics of NH3-oxidation,NO-turnover,N2O-production and electron flow during oxygen depletion in model bacterial and archaeal ammonia oxidisers[J]. Environmental Microbiology,2017,19(12):4882-4896.
[74]Shaw L J,Nicol G W,Smith Z,et al. Nitrosospira spp. can produce nitrous oxide via a nitrifier denitrification pathway[J]. Environmental Microbiology,2006,8(2):214-222.
[75]Santoro A E,Buchwald C,McIlvin M R,et al. Isotopic signature of N2O produced by marine ammonia-oxidizing archaea[J]. Science,2011,333(6047):1282-1285.
[76]Loescher C R,Kock A,Koenneke M,et al. Production of oceanic nitrous oxide by ammonia-oxidizing archaea[J]. Biogeosciences,2012,9(7):2419-2429.
[77]Hink L,Gubry-Rangin C,Nicol G W,et al. The consequences of niche and physiological differentiation of archaeal and bacterial ammonia oxidisers for nitrous oxide emissions[J]. ISME Journal,2018,12(4):1084-1093.
[78]Tzanakakis V A,Taylor A E,Bakken L R,et al. Relative activity of ammonia oxidizing archaea and bacteria determine nitrification-dependent N2O emissions in oregon forest soils[J]. Soil Biology and Biochemistry,2019,139:107612.
[79]Meinhardt K A,Stopnisek N,Pannu M W,et al. Ammonia-oxidizing bacteria are the primary N2O producers in an ammonia-oxidizing archaea dominated alkaline agricultural soil[J]. Environmental Microbiology,2018,20(6):2195-2206.
[80]Oechel W C,Vourlitis G L,Hastings S J,et al. Acclimation of ecosystem CO2 exchange in the Alaskan arctic in response to decadal climate warming[J]. Nature,2000,406(6799):978-981.
[81]Liu Y,Zhou H M,Wang J Q,et al. Short-term response of nitrifier communities and potential nitrification activity to elevated CO2 and temperature interaction in a Chinese paddy field[J]. Applied Soil Ecology,2015,96:88-98.
[82]Lu L,Han W Y,Zhang J B,et al. Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea[J]. ISME Journal,2012,6(10):1978-1984.
[83]Avrahami S,Bohannan B J A. Response of Nitrosospira sp. strain af-like ammonia oxidizers to changes in temperature,soil moisture content,and fertilizer concentration[J]. Applied and environmental microbiology,2007,73(4):1166-1173.
[84]Rustad L E,Campbell J L,Marion G M,et al. A meta-analysis of the response of soil respiration,net nitrogen mineralization,and aboveground plant growth to experimental ecosystem warming[J]. Oecologia,2001,126(4):543-562.
[85]Lan T,Han Y,Roelcke M,et al. Temperature dependence of gross N transformation rates in two Chinese paddy soils under aerobic condition[J]. Biology and Fertility of Soils,2014,50(6):949-959.
[86]Wang C H,Chen Z,Unteregelsbacher S,et al. Climate change amplifies gross nitrogen turnover in montane grasslands of central europe in both summer and winter seasons[J]. Global Change Biology,2016,22(9):2963-2978.
[87]Stopnisek N,Gubry-Rangin C,Hoefferle S,et al. Thaumarchaeal ammonia oxidation in an acidic forest peat soil is not influenced by ammonium amendment[J]. Applied and Environmental Microbiology,2010,76(22):7626-7634.
[88]Levicnik-Hoefferle S,Nicol G W,Ausec L,et al. Stimulation of thaumarchaeal ammonia oxidation by ammonia derived from organic nitrogen but not added inorganic nitrogen[J]. FEMS Microbiology Ecology,2012,80(1):114-123.
[89]Karhu K,Auffret M D,Dungait J A J,et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response[J]. Nature,2014,513(7516):81-84.

相似文献/References:

[1]张宇斌,陈婷,罗天霞,等.温度对铁皮石斛幼苗生长期光合速率的影响[J].江苏农业科学,2013,41(08):223.
 Zhang Yubin,et al.Effect of temperature on photosynthetic rate of Dendrobium officinale during seedling growth period[J].Jiangsu Agricultural Sciences,2013,41(20):223.
[2]梁文艳,梁洋洋,谭洪新,等.用响应曲面法预测生物活性炭填料反应器的硝化效果[J].江苏农业科学,2013,41(06):362.
 Liang Wenyan,et al.Estimation of nitrification effect of biological activated carbon packing reactor by response surface methodology[J].Jiangsu Agricultural Sciences,2013,41(20):362.
[3]徐小华,曾晓红,全晓松,等.虚拟仪器大棚温室环境远程监测系统设计[J].江苏农业科学,2014,42(10):389.
 Xu Xiaohua,et al.Design of environment remote monitoring system in greenhouse based on virtual instrument[J].Jiangsu Agricultural Sciences,2014,42(20):389.
[4]牛明芬,于海娇,武肖媛,等.猪粪秸秆高温堆肥过程中物质变化的研究[J].江苏农业科学,2014,42(09):291.
 Niu Mingfen,et al.Study on material changes during process of pig manure and straw composting[J].Jiangsu Agricultural Sciences,2014,42(20):291.
[5]钟万芳,瞿钰峰,郭慧芳.高效防治烟粉虱的玫烟色棒束孢JZ-7的特性[J].江苏农业科学,2013,41(07):104.
 Zhong Wanfang,et al.Characteristics of Isaria fumosorosea JZ-7 with high toxicity to Bemisia tabaci[J].Jiangsu Agricultural Sciences,2013,41(20):104.
[6]余波,林添资,景德道,等.水稻剪颖后温汤杀雄的可行性试验[J].江苏农业科学,2014,42(09):66.
 Yu Bo,et al.Feasibility test of emasculation with hot water after cut glume of rice[J].Jiangsu Agricultural Sciences,2014,42(20):66.
[7]徐少明,吴大军,邱成军.光伏农业环境检测与调控关键技术[J].江苏农业科学,2014,42(08):316.
 Xu Shaoming,et al.Key techniques of environmental monitoring and regulation of photovoltaic agriculture[J].Jiangsu Agricultural Sciences,2014,42(20):316.
[8]李玉全.日本囊对虾的争胜行为及其与温度的关系[J].江苏农业科学,2014,42(08):231.
 Li Yuquan.Observation and analysis of agonistic behavior of Marsupenaeus japonicus under different temperature[J].Jiangsu Agricultural Sciences,2014,42(20):231.
[9]马盛群,李爱顺,茆建强,等.温度对日本沼虾末期幼体变态发育的影响[J].江苏农业科学,2014,42(08):239.
 Ma Shengqun,et al.Effect of temperature on late metamorphosis of larva of freshwater shrimp,Macrobrachium nipponense (De Haan)[J].Jiangsu Agricultural Sciences,2014,42(20):239.
[10]陈雪梅,欧静,陈训,等.雷山杜鹃种子特性及萌发试验研究[J].江苏农业科学,2014,42(08):184.
 Chen Xuemei,et al.Study on seed characteristics and germination test of Rhododendron leishanicum Fang et S. S. Chang[J].Jiangsu Agricultural Sciences,2014,42(20):184.

备注/Memo

备注/Memo:
收稿日期:2019-12-11
基金项目:国家自然科学基金杰出青年基金(编号:41525002);国家自然科学基金面上项目(编号:41877051)。
作者简介:金雪莲(1993—),女,吉林图们人,硕士研究生,主要从事土壤微生物学研究。E-mail:xljin@iue.ac.cn。
通信作者:姚槐应,博士,研究员,主要从事土壤微生物生态学研究,E-mail:hyyao@iue.ac.cn;樊昊心,博士,讲师,主要从事环境微生物学研究,E-mail:haoxin.fan@wit.edu.cn。
更新日期/Last Update: 2020-11-09