|本期目录/Table of Contents|

[1]张伟,余方伟,李建斌,等.甘蓝蔗糖合成酶基因家族鉴定及响应低温胁迫表达模式分析[J].江苏农业科学,2021,49(2):24-32.
 Zhang Wei,et al.Identification of cabbage sucrose synthase gene family and its expression pattern in response to low temperature stress[J].Jiangsu Agricultural Sciences,2021,49(2):24-32.
点击复制

甘蓝蔗糖合成酶基因家族鉴定及响应低温胁迫表达模式分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第49卷
期数:
2021年第2期
页码:
24-32
栏目:
生物技术
出版日期:
2021-01-20

文章信息/Info

Title:
Identification of cabbage sucrose synthase gene family and its expression pattern in response to low temperature stress
作者:
张伟 余方伟 李建斌 王神云
江苏省农业科学院蔬菜研究所/江苏省高效园艺作物改良重点实验室,江苏南京 20014
Author(s):
Zhang Weiet al
关键词:
甘蓝低温胁迫蔗糖合成酶表达模式
Keywords:
-
分类号:
S188
DOI:
-
文献标志码:
A
摘要:
蔗糖合成酶(SUS)是植物蔗糖代谢的关键酶之一,它不仅影响植物的产量和品质,还在植物抵御逆境胁迫中起重要作用。基于已经公布的甘蓝全基因组数据信息,利用生物信息学方法对甘蓝BoSUS基因家族成员进行鉴定,分析其系统进化关系、染色体定位、基因结构、启动子顺式作用元件和低温胁迫下的表达模式。结果表明,甘蓝全基因组共鉴定到7个BoSUS基因成员,系统进化分析分成3个亚组(Ⅰ、Ⅱ、Ⅲ)。BoSUS蛋白氨基酸长度范围为805(BoSUS1a)~940(BoSUS6b)个,均是亲水性蛋白。在芸薹族特异的全基因组3倍化事件后,与拟南芥AtSUS[STBX]4共线性的甘蓝BoSUS4基因发生了丢失,与AtSUS1、AtSUS6共线性的BoSUS1和BoSUS6基因均发生了扩张,出现了双拷贝(BoSUS1a、BoSUS1b和BoSUS6a、BoSUS6b)。表达模式分析表明,BoSUS1a、BoSUS1b和BoSUS3基因在甘蓝不同器官/组织尤其在花器官的蔗糖代谢中起着重要作用,为库器官(花)的发育提供能量和物质。耐冷甘蓝CT-923叶片中BoSUS1a和BoSUS1b基因表达水平在低温处理6、24 h后相比对照急剧升高,BoSUS1a和BoSUS1b酶活性增强,为甘蓝产生保护性反馈机制提供能量,使得耐冷甘蓝CT-923耐寒性增强。综上所述,本研究为解析甘蓝BoSUS基因响应低温胁迫的分子机制和指导甘蓝耐寒种质资源创新具有重要意义。
Abstract:
-

参考文献/References:

[1]Koch K E. Carbohydrate-modulated gene expression in plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1996,47(1):509-540.
[2]Chourey P S,Taliercio E W,Carlson S J,et al. Genetic evidence that the two isozymes of sucrose synthase present in developing maize endosperm are critical,one for cell wall integrity and the other for starch biosynthesis[J]. Molecular & General Genetics,1998,259(1):88-96.
[3]Lutfiyya L L,Xu N F,DOrdine R L,et al. Phylogenetic and expression analysis of sucrose phosphate synthase isozymes in plants[J]. Journal of Plant Physiology,2007,164(7):923-933.
[4]Ruan Y L,Jin Y,Yang Y J,et al. Sugar input,metabolism,and signaling mediated by invertase:roles in development,yield potential,and response to drought and heat[J]. Molecular Plant,2010,3(6):942-955.
[5]Chinnusamy V,Zhu J H,Zhu J K. Cold stress regulation of gene expression in plants[J]. Trends in Plant Science,2007,12(10):444-451.
[6]Brill E,van Thournout M,White R G,et al. A novel isoform of sucrose synthase is targeted to the cell wall during secondary cell wall synthesis in cotton fiber[J]. Plant Physiology,2011,157(1):40-54.
[7]Ngele T,Heyer A G. Approximating subcellular organisation of carbohydrate metabolism during cold acclimation in different natural accessions of Arabidopsis thaliana[J]. The New Phytologist,2013,198(3):777-787.
[8]杨丽梅,方智远,庄木,等. “十二五”我国甘蓝遗传育种研究进展[J]. 中国蔬菜,2016(11):1-6.
[9]Sasaki H I,Ichimura K A,Oda M A. Changes in sugar content during cold acclimation and deacclimation of cabbage seedlings[J]. Annals of Botany,1996,78(3):365-369.
[10]王磊,李建勇,张振贤,等. 冻害低温下越冬甘蓝渗透调节物质的变化和作用[J]. 山东农业大学学报(自然科学版),2001,32(4):487-490,494.
[11]蔡青,李成琼,司军. 结球甘蓝耐寒性研究进展[J]. 长江蔬菜,2009(2):1-3.
[12]Baud S,Vaultier M N,Rochat C. Structure and expression profile of the sucrose synthase multigene family in Arabidopsis[J]. Journal of Experimental Botany,2004,55(396):397-409.
[13]Hirose T,Scofield G N,Terao T. An expression analysis profile for the entire sucrose synthase gene family in rice[J]. Plant Science,2008,174(5):534-543.
[14]Duncan K A,Hardin S C,Huber S C. The three maize sucrose synthase isoforms differ in distribution,localization,and phosphorylation[J]. Plant & Cell Physiology,2006,47(7):959-971.
[15]Zhang D Q,Xu B H,Yang X H,et al. The sucrose synthase gene family in Populus:structure,expression,and evolution[J]. Tree Genetics & Genomes,2011,7(3):443-456.
[16]晁毛妮,张自阳,王润豪,等. 大豆蔗糖合成酶家族成员的全基因组鉴定及表达分析[J]. 西北植物学报,2018,38(2):232-241.
[17]Fu H,Park W D. Sink-and vascular-associated sucrose synthase functions are encoded by different gene classes in potato[J]. The Plant Cell,1995,7(9):1369-1385.
[18]Ruan Y L,Llewellyn D J,Furbank R T. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation,elongation,and seed development[J]. The Plant Cell,2003,15(4):952-964.
[19]Zrenner R,Salanoubat M,Willmitzer L,et al. Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants(Solanum tuberosum L.)[J]. The Plant Journal,1995,7(1):97-107.
[20]Wang X W,Wang H Z,Wang J,et al. The genome of the mesopolyploid crop species Brassica rapa[J]. Nature Genetics,2011,43(10):1035-1039.
[21]Liu S Y,Liu Y M,Yang X H,et al. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes[J]. Nature Communications,2014,5:3930.
[22]Hu B,Jin J P,Guo A Y,et al. GSDS 2.0:an upgraded gene feature visualization server[J]. Bioinformatics,2015,31(8):1296-1297.
[23]Kumar S,Stecher G,Tamura K. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution,2016,33(7):1870-1874.
[24]Voorrips R E. MapChart:software for the graphical presentation of linkage maps and QTLs[J]. The Journal of Heredity,2002,93(1):77-78.
[25]Chen C J,Chen H,Zhang Y,et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant,2020,13(8):1194-1202.
[26]Koch M A,Haubold B,Mitchell-Olds T. Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis,Arabis,and related genera(Brassicaceae)[J]. Molecular Biology and Evolution,2000,17(10):1483-1498.
[27]Cheng F,Mandáková T,Wu J,et al. Deciphering the diploid ancestral genome of the mesohexaploid Brassica rapa[J]. The Plant Cell,2013,25(5):1541-1554.
[28]Kakumanu A,Ambavaram M M,Klumas C A,et al. Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-Seq[J]. Plant Physiology,2012,160(2):846-867.
[29]Lastdrager J,Hanson J,Smeekens S. Sugar signals and the control of plant growth and development[J]. Journal of Experimental Botany,2014,65(3):799-807.
[30]Ruan Y L. Signaling role of sucrose metabolism in development[J]. Molecular Plant,2012,5(4):763-765.
[31]Barratt D H,Derbyshire P,Findlay K,et al. Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase[J]. PNAS,2009,106(31):13124.
[32]Zhang C H,Yu M L,Ma R J,et al. Structure,expression profile,and evolution of the sucrose synthase gene family in peach(Prunus persica)[J]. Acta Physiologiae Plantarum,2015,37(4):81.
[33]Zhu X D,Wang M Q,Li X P,et al. Genome-wide analysis of the sucrose synthase gene family in grape(Vitis vinifera):structure,evolution,and expression profiles[J]. Genes,2017,8(4):111.
[34]Fenando E P,Boero C,Gallardo M,et al. Effect of NaCl on germination,growth,and soluble sugar content in Chenopodium quinoa Willd. seeds[J]. Botanical Bulletin-Academia Sinica Taipei,2000,41(1):27-34.
[35]房经贵,朱旭东,贾海锋,等. 植物蔗糖合酶生理功能研究进展[J]. 南京农业大学学报,2017,40(5):759-768.
[36]Klotz K L,Haagenson D M. Wounding,anoxia and cold induce sugarbeet sucrose synthase transcriptional changes that are unrelated to protein expression and activity[J]. Journal of Plant Physiology,2008,165(4):423-434.
[37]Crespi M D,Zabaleta E J,Pontis H G,et al. Sucrose synthase expression during cold acclimation in wheat[J]. Plant Physiology,1991,96(3):887-891.
[38]Takehara K,Murata K,Yamaguchi T,et al. Thermo-responsive allele of sucrose synthase 3(Sus3) provides high-temperature tolerance during the ripening stage in rice(Oryza sativa L.)[J]. Breeding Science,2018,68(3):336-342.
[39]何艺涛,王广亚,范春芬,等. 植物蔗糖合酶研究进展[J]. 植物生理学报,2020,56(6):1165-1176.

相似文献/References:

[1]王红亮,陈丽丽.低温胁迫对9种绿化树木相对电导率的影响[J].江苏农业科学,2013,41(04):167.
[2]沙向红,严建萍.低温胁迫对幼苗期棉花根系ADHa与BADH表达的影响[J].江苏农业科学,2013,41(08):37.
 Sha Xianghong,et al.Effect of low temperature stress on expression of ADHa and BADH gene in root of cotton seedlings[J].Jiangsu Agricultural Sciences,2013,41(2):37.
[3]张志,徐洪国,王世发,等.低温胁迫对黄瓜幼苗生理指标的影响[J].江苏农业科学,2013,41(05):126.
 Zhang Zhi,et al.Effect of low temperature stress on physiological indicators of cucumber seedings[J].Jiangsu Agricultural Sciences,2013,41(2):126.
[4]潘永飞,陈智超,潘跃平.不同类型甘蓝制种父母本定植比例试验[J].江苏农业科学,2014,42(12):214.
 Pan Yongfei,et al.Planting proportion test of different types of cabbage parents during seed production[J].Jiangsu Agricultural Sciences,2014,42(2):214.
[5]万云龙.优质水稻—春甘蓝轮作高效栽培模式[J].江苏农业科学,2014,42(12):90.
 Wan Yunlong.Efficient cultivation mode of high quality rice-spring cabbage rotation[J].Jiangsu Agricultural Sciences,2014,42(2):90.
[6]戴红燕,华劲松,张荣萍,等.低温胁迫对高原粳稻幼苗生长的影响[J].江苏农业科学,2014,42(11):85.
 Dai Hongyan,et al(8).Effect of low temperature stress on seedling growth of plateau japonica rice[J].Jiangsu Agricultural Sciences,2014,42(2):85.
[7]王志春.防虫网在无公害甘蓝生产上的应用技术[J].江苏农业科学,2015,43(12):178.
 Wang Zhichun.Application of insect-proof screen in pollution-free cabbage production[J].Jiangsu Agricultural Sciences,2015,43(2):178.
[8]李孝凯,沙伟,国春晖,等.低温胁迫对毛尖紫萼藓、东亚砂藓生理生化及光合特性的影响[J].江苏农业科学,2014,42(10):355.
 Li Xiaokai,et al.Effects of low temperature stress on physiological,biochemical and photosynthetic characteristics of Grimmia pilifera and Racomitrium japonicum[J].Jiangsu Agricultural Sciences,2014,42(2):355.
[9]侯丽霞.CaCl2浸种对低温胁迫下水稻幼苗生理指标的影响[J].江苏农业科学,2013,41(08):70.
 Hou Lixia,et al.Effect of soaking seeds with CaCl2 on physiological indicators of rice seedlings[J].Jiangsu Agricultural Sciences,2013,41(2):70.
[10]郑子松,王林闯,李刚,等.木薯渣复配基质在甘蓝育苗上的应用效果[J].江苏农业科学,2013,41(10):108.
 Zheng Zisong,et al.Application effect of cassava residue compound matrix on cultivation of Brassica oleracea seedlings[J].Jiangsu Agricultural Sciences,2013,41(2):108.
[11]山溪,秦文斌,张振超,等.甘蓝蔗糖磷酸合酶家族的鉴定和表达分析[J].江苏农业科学,2021,49(16):53.
 Shan Xi,et al.Genome-wide identification and expression analysis of sucrose phosphate synthase family in cabbage[J].Jiangsu Agricultural Sciences,2021,49(2):53.

备注/Memo

备注/Memo:
收稿日期:2020-09-02
基金项目:国家自然科学基金(编号:31902009);国家大宗蔬菜产业技术体系建设专项(编号:CARS-23-G42);江苏省农业科技自主创新资金[编号:CX(18)2006]。
作者简介:张伟(1989—),男,安徽安庆人,博士,副研究员,主要从事甘蓝耐寒机理及育种研究。E-mail:zhangwei@jaas.ac.cn。
通信作者:王神云,硕士,研究员,主要从事甘蓝抗病、抗逆机理及遗传育种研究。E-mail:wangshenyun@jaas.ac.cn。
更新日期/Last Update: 2021-01-20