|本期目录/Table of Contents|

[1]牛鑫,柴倩囡,冯九海,等.4种鬼伞β-1,3-葡聚糖转移酶的生物信息学分析[J].江苏农业科学,2021,49(6):33-39.
 Niu Xin,et al.Bioinformatics analysis of β-1,3-glucanosyltransferases in four coprinoid mushrooms[J].Jiangsu Agricultural Sciences,2021,49(6):33-39.
点击复制

4种鬼伞β-1,3-葡聚糖转移酶的生物信息学分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第49卷
期数:
2021年第6期
页码:
33-39
栏目:
生物技术
出版日期:
2021-03-20

文章信息/Info

Title:
Bioinformatics analysis of β-1,3-glucanosyltransferases in four coprinoid mushrooms
作者:
牛鑫1柴倩囡1冯九海1单华佳1柯善文1汉佳昕2魏生龙1
1.河西学院甘肃省应用真菌工程实验室/甘肃省食用菌遗传育种重点实验室/祁连山食用菌产业协同创新中心,甘肃张掖 734000;2.河西学院生命科学与工程学院,甘肃张掖 734000
Author(s):
Niu Xinet al
关键词:
真菌细胞壁菌柄伸长β-13-葡聚糖细胞壁重构多序列比对生物信息学
Keywords:
-
分类号:
S188+.3
DOI:
-
文献标志码:
A
摘要:
鬼伞是一类菌柄能在短时间内快速伸长并且伞盖易自溶形成墨汁的蘑菇,菌柄在伸长过程中细胞壁以伸长生长为主,细胞壁组分β-1,3-葡聚糖发生重构修饰,GH72家族的β-1,3-葡聚糖转移酶能够将较低聚合度的寡糖转化生成更高聚合度的糖链。β-1,3-葡聚糖转移酶可能参与鬼伞菌柄细胞壁中β-葡聚糖组分的重构修饰。以完成测序并有注释信息的灰盖拟鬼伞(Coprinopsis cinerea)、拟鬼伞(Coprinopsis marcescibilis)、晶粒小鬼伞(Coprinellus micaceus)和小脆柄菇(Psathyrella aberdarensis)等4种鬼伞的β-1,3-葡聚糖转移酶的氨基酸序列为基础,采用TargetP、WOLF PSORT、SignalP、Sompa、TMHMM 2.0、Big-PI Fungal Predictor、MEME和SISS-MODEL等生物信息学分析工具对其开展蛋白质亚细胞定位、细胞信号肽、二级结构、跨膜螺旋、糖基化磷脂酰肌醇(GPI)锚定位点、基序以及三级结构等进行分析,同时对上述序列开展遗传进化关系分析。研究结果可为进一步深入开展该蛋白在菌柄伸长过程中细胞壁β-葡聚糖组分的重构修饰研究作基础。
Abstract:
-

参考文献/References:

[1]Kuo M. Coprinoid mushrooms:the inky caps[Z]. http://www.mushroomexpert.com/coprinoid.html.
[2]Kirk P M,Cannon P F,Minter D W,et al. Ainsworth & bisbys dictionary of the fungi[M]. 10th ed. Wallingford CABI Publishing,2008:169.
[3]周茂新,文华安. 中国鬼伞属的研究现状[C]//第八届海峡两岸菌物学学术研讨会论文集.长春,2007:10-14.
[4]Redhead S A,Vilgalys R,Moncalvo J M,et al. Coprinus Pers. and the disposition of Coprinus species sensu lato[J]. Taxon,2001,50(1):203-241.
[5]Zhang W M,Wu X X,Zhou Y J,et al. Characterization of stipe elongation of the mushroom Coprinopsis cinerea[J]. Microbiology (Reading,England),2014,160(Pt 9):1893-1902.
[6]Kamada T,Takemaru T,Prosser J I,et al. Right and left handed helicity of chitin microfibrils in stipe cells in Coprinus cinereus[J]. Protoplasma,1991,165(1):64-70.
[7]Kamada T,Fujii T,Nakagawa T,et al. Changes in (1→3)-β-glucanase activities during stipe elongation in Coprinus cinereus[J]. Current Microbiology,1985,12(5):257-259.
[8]Mol P C,Vermeulen C A,Wessels J. Diffuse extension of hyphae in stipes of Agaricus bisporus may be based on a unique wall structure[J]. Mycological Research,1990,94(4):480-488.
[9]Bartnicki-García S. Glucans,walls,and morphogenesis:on the contributions of J. G. H. Wessels to the golden decades of fungal physiology and beyond[J]. Fungal Genetics and Biology,1999,27(2/3):119-127.
[10]Zhou J S,Kang L Q,Liu C C,et al. Chitinases play a key role in stipe cell wall extension in the mushroom Coprinopsis cinerea[J]. Applied and Environmental Microbiology,2019,85(15):519-532.
[11]Kang L Q,Zhou J S,Wang R,et al. Glucanase-induced stipe wall extension shows distinct differences from chitinase-induced stipe wall extension of Coprinopsis cinerea[J]. Applied and Environmental Microbiology,2019,85(21):1319-1345.
[12]Free S J. Fungal cell wall organization and biosynthesis[J]. Advances in Genetics,2013,81:33-82.
[13]Latgé J P. The cell wall:a carbohydrate armour for the fungal cell[J]. Molecular Microbiology,2007,66(2):279-290.
[14]Cabib E,Blanco N,Grau C,et al. Crh1p and Crh2p are required for the cross-linking of chitin to β(1-6)glucan in the Saccharomyces cerevisiae cell wall[J]. Molecular Microbiology,2007,63(3):921-935.
[15]Pardini G,De Groot P W,Coste A T,et al. The CRH family coding for cell wall glycosylphosphatidylinositol proteins with a predicted transglycosidase domain affects cell wall organization and virulence of Candida albicans[J]. The Journal of Biological Chemistry,2006,281(52):40399-40411.
[16]Goldman R C,Sullivan P A,Zakula D,et al. Kinetics of β-1,3 glucan interaction at the donor and acceptor sites of the fungal glucosyltransferase encoded by the BGL2 gene[J]. European Journal of Biochemistry,1995,227(1/2):372-378.
[17]Amandine G A,Mouyna I,Simenel C,et al. Characterization of a new β(1-3)-glucan branching activity of Aspergillus fumigatus[J]. The Journal of Biological Chemistry,2010,285(4):2386-2396.
[18]Kitagaki H,Ito K,Shimoi H. A temperature-sensitive dcw1 mutant of Saccharomyces cerevisiae is cell cycle arrested with small buds which have aberrant cell walls[J]. Eukaryotic Cell,2004,3(5):1297-1306.
[19]Maddi A,Fu C,Free S J. The Neurospora crassa dfg5 and dcw1 genes encode α-1,6-mannanases that function in the incorporation of glycoproteins into the cell wall[J]. PLoS One,2012,7(6):e38872.
[20]Cabib E,Arroyo J. How carbohydrates sculpt cells:chemical control of morphogenesis in the yeast cell wall[J]. Nature Reviews Microbiology,2013,11(9):648-655.
[21]Amandine G A,Fontaine T,Latgé J P,et al. β(1-3)glucanosyltransferase gel4p is essential for Aspergillus fumigatus[J]. Eukaryotic Cell,2010,9(8):1294-1298.
[22]Delso I,Valero-Gonzalez J,Gomollón-Bel F,et al. Inhibitors against fungal cell wall remodeling enzymes[J]. ChemMedChem,2018,13(2):128-132.
[23]Luo Z,Zhang T,Liu P,et al. The Beauveria bassiana gas3 β-glucanosyltransferase contributes to fungal adaptation to extreme alkaline conditions[J]. Applied and Environmental Microbiology,2018,84(15):1018-1086.
[24]Medina-Redondo M M,Arnáiz-Pita Y,Clavaud C,et al. β(1,3)-glucanosyltransferase activity is essential for cell wall integrity and viability of Schizosaccharomyces pombe[J]. PLoS One,2010,5(11):e14046.
[25]Kumar S,Stecher G,Tamura K. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution,2016,33(7):1870-1874.
[26]Saitou N,Nei M. The neighbor-joining method:a new method for reconstructing phylogenetic trees[J]. Molecular Biology and Evolution,1987,4(4):406-425.
[27]Jones D T,Taylor W R,Thornton J M. The rapid generation of mutation data matrices from protein sequences[J]. Computer Applications in the Biosciences,1992,8(3):275-282.
[28]Ragni E,Fontaine T,Gissi C,et al. The gas family of proteins of Saccharomyces cerevisiae:characterization and evolutionary analysis[J]. Yeast,2007,24(4):297-308.
[29]Kar B,Patel P,Ao J,et al. Neurospora crassa family GH72 glucanosyltransferases function to crosslink cell wall glycoprotein N-linked galactomannan to cell wall lichenin[J]. Fungal Genetics and Biology,2019,123:60-69.
[30]Popolo L,Degani G,Camilloni C,et al. The PHR family:the role of extracellular transglycosylases in shaping Candida albicans cells[J]. Journal of Fungi,2017,3(4):59.
[31]Hurtado-Guerrero R,Schüttelkopf A W,Mouyna I,et al. Molecular mechanisms of yeast cell wall glucan remodeling[J]. The Journal of Biological Chemistry,2009,284(13):8461-8469.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2020-07-13
基金项目:河西学院科研创新与应用校长基金(编号:XZ2017006);河西学院科研创新与应用校长基金专题(编号:XZZX2020006);甘肃省高等学校创新基金(编号:2020A-104);甘肃省引导科技创新发展专项资金 (编号:2017zx-10)。
作者简介:牛鑫(1988—),男,甘肃通渭人,博士,副研究员,从事菌物生物信息学、菌物资源以及真菌细胞壁研究。E-mail:niuxin1988@126.com。
通信作者:魏生龙,教授,主要从事食用菌研究。E-mail:zywsw0281@163.com。
更新日期/Last Update: 2021-03-20