|本期目录/Table of Contents|

[1]杨俊芳,曹越,王宙,等.蓖麻高密度遗传图谱构建亲本SNP多态性分析[J].江苏农业科学,2021,49(9):53-57.
 Yang Junfang,et al.Polymorphism analysis of parental SNPs in castor plant high-density genetic map construction[J].Jiangsu Agricultural Sciences,2021,49(9):53-57.
点击复制

蓖麻高密度遗传图谱构建亲本SNP多态性分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第49卷
期数:
2021年第9期
页码:
53-57
栏目:
生物技术
出版日期:
2021-05-05

文章信息/Info

Title:
Polymorphism analysis of parental SNPs in castor plant high-density genetic map construction
作者:
杨俊芳 曹越 王宙 王亚 张宏斌 赵宜婷 王宏伟
山西农业大学经济作物研究所,山西太原 030031
Author(s):
Yang Junfanget al
关键词:
蓖麻全基因组重测序亲本SNP多态性分析
Keywords:
-
分类号:
S563.903.2
DOI:
-
文献标志码:
A
摘要:
为了筛选最佳构建蓖麻高密度遗传图谱的亲本组合,以农艺性状差异较大的蓖麻两性系SL1为父本,镶嵌型雌性系HCH3和HCH1分别为母本,基于全基因组重测序(WGS)技术和生物信息学分析方法对2组亲本进行SNP标记多态性分析。结果表明,2组亲本间多态性标记均比较丰富,其中以HCH1为母本的组合2的亲本多态性更佳,SNP多态性标记总数为581 158个,可用aa×bb型SNP标记为181 791个。最佳亲本组合的确定为构建蓖麻的高密度遗传图谱、多种农艺性状定位和基因挖掘奠定了良好的基础。
Abstract:
-

参考文献/References:

[1]Alexandrov O S,Karlov G I. Molecular cytogenetic analysis and genomic organization of major DNA repeats in castor bean (Ricinus communis L.)[J]. Molecular Genetics and Genomics,2016,291(2):775-787.
[2]杨俊芳,王亚,曹越,等. 蓖麻性别决定基因研究进展[J]. 山西农业科学,2020,48(7):1164-1167.
[3]Wheeler N,Sederoff R. Role of genomics in the potential restoration of the American chestnut[J]. Tree Genetics & Genomes,2008,5(1):181.
[4]Wu J,Li L T,Li M,et al. High-density genetic linkage map construction and identification of fruit-related QTLs in pear using SNP and SSR markers[J]. Journal of Experimental Botany,2014,65(20):5771-5781.
[5]Chen J,Wang N,Fang L C,et al. Construction of a high-density genetic map and QTLs mapping for sugars and acids in grape berries[J]. BMC Plant Biology,2015,15:28.
[6]Ren X,Wang J,Liu L,et al. SNP-based high density genetic map and mapping of btwd1 dwarfing gene in barley[J]. Scientific Reports,2016,6:31741.
[7]Jiang N,Shi S,Shi H,et al. Mapping QTL for seed germinability under low temperature using a new high-density genetic map of rice[J]. Frontiers in Plant Science,2017,8:1223.
[8]Zhao Y,Su K,Wang G,et al. High-density genetic linkage map construction and quantitative trait locus mapping for hawthorn (Crataegus pinnatifida Bunge)[J]. Scientific Reports,2017,7(1):5492.
[9]毕川,陆建农,殷学贵. 蓖麻遗传图谱构建初报[J]. 内蒙古民族大学学报(自然科学版),2013,28(5):532-535,564.
[10]Liu S,Yin X E,Lu J N,et al. The first genetic linkage map of Ricinus communis L. based on genome-SSR markers[J]. Industrial Crops and Products,2016,89:103-108.
[11]Lu J N,Shi Y Z,Yin X E,et al. The genetic mechanism of sex type,a complex quantitative trait,in Ricinus communis L.[J]. Industrial Crops and Products,2019,128:590-598.
[12]Tomar R S,Parakhia M V,Thakkar J R,et al. Development of linkage map and identification of QTLs responsible for fusarium wilt resistance in castor (Ricinus communis L.)[J]. Research Journal of Biotechnology,2016,11(5):67-73.
[13]Tomar R S,Parakhia M V,Rathod V M,et al. Molecular mapping and identification of QTLs responsible for charcoal rot resistance in castor (Ricinus communis L.)[J]. Industrial Crops and Products,2017,95:184-190.
[14]Yu A,Li F,Xu W,et al. Application of a high-resolution genetic map for chromosome-scale genome assembly and fine QTLs mapping of seed size and weight traits in castor bean[J]. Scientific Reports,2019,9(1):11950.
[15]赖国荣,张静,刘函,等. 基于GBS构建玉米高密度遗传图谱及营养品质性状QTL定位[J]. 农业生物技术学报,2017,25(9):1400-1410.
[16]唐立群,肖层林,王伟平. SNP分子标记的研究及其应用进展[J]. 中国农学通报,2012,28(12):154-158
[17]Li B,Lu X,Dou J,et al. Construction of a high-density genetic map and mapping of fruit traits in watermelon (Citrullus lanatus L.) based on whole-genome resequencing[J]. International Journal of Molecular Sciences,2018,19(10):3268.
[18]Jiang J,Fan X,Zhang Y,et al. Construction of a high-density genetic map and mapping of firmness in grapes (Vitis vinifera L.) based on whole-genome resequencing[J]. International Journal of Molecular Sciences,2020,21(3):797.
[19]Talukder Z,Underwood W,Ma G,et al. Genetic dissection of phomopsis stem canker resistance in cultivated sunflower using high density SNP linkage map[J]. International Journal of Molecular Sciences,2020,21(4):1497.
[20]Chan A P,Crabtree J,Zhao Q,et al. Draft genome sequence of the oilseed species Ricinus communis[J]. Nature Biotechnology,2010,28(9):951-956.
[21]郑剑,李兴星,苏华英,等. 粳稻资源热粳35遗传图谱构建与耐热QTL分析[J]. 核农学报,2017,31(5):844-851.
[22]单红丽,李文凤,黄应昆,等. 甘蔗抗褐锈病基因定位亲本间多态性SSR标记筛选[J]. 核农学报,2019,33(11):2119-2125.
[23]许梦琦,李双铃,任艳,等. 花生作图亲本间分子标记的多态性分析[J]. 湖北农业科学,2015,54(11):2763-2766.
[24]黄焕焕,张桂华,韩毅科,等. 黄瓜作图亲本间分子标记的多态性分析[J]. 华北农学报,2007,22(2):47-49.
[25]贺丹,吴芳芳,张佼蕊,等. 牡丹转录组SSR信息分析及其分子标记开发[J]. 江苏农业学报,2019,35(6):1428-1433.
[26]Agarwal G,Clevenger J,Pandey M K,et al. High-density genetic map using whole-genome resequencing for fine mapping and candidate gene discovery for disease resistance in peanut[J]. Plant Biotechnology Journal,2018,16(11):1954-1967.
[27]Zhang Y,Li W,Lin Y,et al. Construction of a high-density genetic map and mapping of QTLs for soybean (Glycine max) agronomic and seed quality traits by specific length amplified fragment sequencing[J]. BMC Genomics,2018,19(1):641.
[28]Luo X,Xu L,Wang Y,et al. An ultra-high-density genetic map provides insights into genome synteny,recombination landscape and taproot skin colour in radish (Raphanus sativus L.)[J]. Plant Biotechnology Journal,2020,18(1):274-286.
[29]Tong Z,Zhou J,Xiu Z,et al. Construction of a high-density genetic map with whole genome sequencing in Nicotiana tabacum L.[J]. Genomics,2020,112(2):2028-2033.
[30]魏庆镇. 黄瓜果实长度性状QTL定位及候选基因的筛选[D]. 南京:南京农业大学2016:19-20
[31]Wu X,Feng F,Zhu Y,et al. Construction of high-density genetic map and identification of QTLs associated with seed vigor after exposure to artificial aging conditions in sweet corn using SLAF-seq[J]. Genes,2019,11(1):37.
[32]Liu D L,Chen S W,Liu X C,et al. Genetic map construction and QTL analysis of leaf-related traits in soybean under monoculture and relay intercropping[J]. Scientific Reports,2019,9(1):2716.
[33]Zhang S,Hu X,Miao H,et al. QTL identification for seed weight and size based on a high-density SLAF-seq genetic map in peanut (Arachis hypogaea L.)[J]. BMC Plant Biology,2019,19(1):537.
[34]Du H,Zhang H,Wei L,et al. A high-density genetic map constructed using specific length amplified fragment (SLAF) sequencing and QTL mapping of seed-related traits in sesame (Sesamum indicum L.)[J]. BMC Plant Biology,2019,19(1):588.
[35]Li Y,Yang K,Yang W,et al. Identification of QTL and qualitative trait loci for agronomic traits using SNP markers in the adzuki bean[J]. Frontiers in Plant Science,2017,8:840.
[36]Zhou F,Liu Y,Liang C,et al. Construction of a high-density genetic linkage map and QTL mapping of oleic acid content and three agronomic traits in sunflower (Helianthus annuus L.) using specific-locus amplified fragment sequencing (SLAF-seq)[J]. Breeding Science,2018,68(5):596-605.
[37]Oren E,Tzuri G,Dafna A,et al. High-density NGS-based map construction and genetic dissection of fruit shape and rind netting in Cucumis melo[J]. Theoretical and Applied Genetics,2020,133(6):1927-1945.

相似文献/References:

[1]狄建军,张庆波,孙颖飞,等.蓖麻种子总RNA提取方法比较[J].江苏农业科学,2013,41(05):33.
 Di Jianjun,et al.Comparison of total RNA extraction methods from castor bean seed[J].Jiangsu Agricultural Sciences,2013,41(9):33.
[2]史景允,于伟红,梁秋生.蓖麻对镉污染土壤的修复潜力[J].江苏农业科学,2014,42(11):386.
 Shi Jingyun,et al(8).Potential repairing of cadmium contaminated soil by castor oil plant[J].Jiangsu Agricultural Sciences,2014,42(9):386.
[3]周桂生,高红明,陆建飞,等.中度盐碱地蓖麻高产栽培技术规程[J].江苏农业科学,2013,41(11):85.
 Zhou Guisheng,et al.High-yield cultivation techniques of Ricinus communis L. on medium saline land[J].Jiangsu Agricultural Sciences,2013,41(9):85.
[4]罗蕊,赵志强,黄凤兰,等.蓖麻毒蛋白在蓖麻组培苗不同部位叶片中含量的测定[J].江苏农业科学,2014,42(02):43.
 Luo Rui,et al.Determination of ricin content in different parts of castor tissue culture seedling leaves[J].Jiangsu Agricultural Sciences,2014,42(9):43.
[5]陈永胜,邵志敏,李国瑞,等.蓖麻花药愈伤组织诱导及防褐化研究[J].江苏农业科学,2014,42(03):39.
 Chen Yongsheng,et al.Study on callus induction and its browning inhibition of Ricinus communis anther[J].Jiangsu Agricultural Sciences,2014,42(9):39.
[6]陈永胜,邵志敏,李国瑞,等.蓖麻花药愈伤组织增殖及防褐化研究[J].江苏农业科学,2014,42(04):46.
 Chen Yongsheng,et al.Study on proliferation and anti-browning of castor anther callus[J].Jiangsu Agricultural Sciences,2014,42(9):46.
[7]姜晓龙,金磊磊,陈辉辉,等.1株侵染蓖麻的葡萄座腔菌菌株鉴定[J].江苏农业科学,2015,43(02):319.
 Jiang Xiaolong,et al.Identification of a Botryosphaeria dothidea strain infecting Ricinus communis[J].Jiangsu Agricultural Sciences,2015,43(9):319.
[8]冯紫洲,刘春梅,衡宝山,等.蓖麻RcSCP基因克隆与生物信息学分析[J].江苏农业科学,2017,45(12):27.
 Feng Zizhou,et al.Cloning and bioinformatics analysis of RcSCP gene from castor[J].Jiangsu Agricultural Sciences,2017,45(9):27.
[9]昭日格图,张玉旭.蓖麻栽培地不同覆盖作物和耕作方式对土壤物理性质的影响[J].江苏农业科学,2017,45(21):82.
 Zhaorigetu,et al.Effects of cover crops and tillage method on soil physical characters in castor cultivation field[J].Jiangsu Agricultural Sciences,2017,45(9):82.
[10]李东娜,陆建农,黄润生,等.索氏抽提法测定蓖麻含油率的条件优化[J].江苏农业科学,2020,48(07):236.
 Li Dongna,et al.Optimization of conditions for determination of oil content in castor by Soxhlet extraction[J].Jiangsu Agricultural Sciences,2020,48(9):236.

备注/Memo

备注/Memo:
收稿日期:2020-09-07
基金项目:国家自然科学基金培育项目(编号:YGJPY1904);山西省农业科学院育种工程项目(编号:17yzgc054)。
作者简介:杨俊芳(1987—),女,山西运城人,硕士,助理研究员,主要从事蓖麻遗传育种研究。E-mail:2287353329@qq.com。
通信作者:王宏伟,研究员,主要从事蓖麻遗传育种和杂种优势利用研究。E-mail:jzswhw@163.com。
更新日期/Last Update: 2021-05-05