|本期目录/Table of Contents|

[1]荣誉磊,周志林,赵冬兰,等.甘薯、番茄、拟南芥中SPL转录因子的生物信息学分析[J].江苏农业科学,2021,49(20):74-83.
 Rong Yulei,et al.Bioinformatics analysis of SPL transcription factors in sweet potato,tomato and Arabidopsis[J].Jiangsu Agricultural Sciences,2021,49(20):74-83.
点击复制

甘薯、番茄、拟南芥中SPL转录因子的生物信息学分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第49卷
期数:
2021年第20期
页码:
74-83
栏目:
生物技术
出版日期:
2021-11-01

文章信息/Info

Title:
Bioinformatics analysis of SPL transcription factors in sweet potato,tomato and Arabidopsis
作者:
荣誉磊1周志林2赵冬兰2唐君2彭湘君1赵玉琪1宗凯3吕亚宁3姚改芳1胡康棣1张华1
1.合肥工业大学食品与生物工程学院,安徽合肥 230601; 2.江苏徐淮地区徐州农业科学研究所,江苏徐州 221131;3.合肥海关技术中心,安徽合肥 238000
Author(s):
Rong Yuleiet al
关键词:
SPL转录因子家族番茄甘薯拟南芥生物信息学
Keywords:
-
分类号:
S188
DOI:
-
文献标志码:
A
摘要:
对甘薯、番茄、拟南芥中63个SPL基因家族进行了系统进化树分析、保守蛋白基序(Motif)分析,筛选归纳出同源性较高的2个分支的12个SPL基因进行理化性质分析、核定位预测等,氨基酸序列比对结果表明这些基因的功能可能较为保守。通过对番茄中的SPL基因Solyc05g015510.2、Solyc10g078700.1进行表达量分析,发现这2个基因可能参与调控果实成熟衰老进程。另外,通过对非生物胁迫下的转录水平进行分析得知,拟南芥中的AT5G43270可能参与对盐胁迫、热胁迫条件下的响应,AT1G27360、AT1G27370可能参与热胁迫条件下的响应,AT2G42200可能参与冷胁迫条件下的响应,而AT3G57920在非生物胁迫条件下表达量没有特别明显的变化,表明AT3G57920可能不参与非生物胁迫下的响应。
Abstract:
-

参考文献/References:

[1]Cawley S,Bekiranov S,Ng H H,et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs[J]. Cell,2004,116(4):499-509.
[2]杨致荣,王兴春,李西朋,等. 高等植物转录因子的研究进展[J]. 遗传,2004,26(3):403-408.
[3]Wu G,Poethig R S,Wu G,et al. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3[J]. Development,2006,133(18):3539-3547.
[4]Usami T,Horiguchi G,Yano S,et al. The more and smaller cells mutants of Arabidopsis thaliana identify novel roles for SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes in the control of heteroblasty[J]. Development,2009,136(6):955-964.
[5]Cardon G H,Hhmann S,Nettesheim K,et al. Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3:a novel gene involved in the floral transition[J]. Plant Journal,1997,12(2):367-377.
[6]Klein J,Saedler H,Huijser P,et al. A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA[J]. Molecular and General Genetics,1996,250(1):7-16.
[7]Tr M,Poole M,Hong Y G,et al. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening[J]. Nature Genetics,2006,38(8):948-952.
[8]Jiao Y Q,Wang Y H,Xue D W,et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nature Genetics,2010,42(6):541-544.
[9]Wang H,Nussbaum-Wagler T,Li B,et al. The origin of the naked grains of maize[J]. Nature,2005,436(7051):714-719.
[10]Unte U S,Sorensen A,Pesaresi P,et al. SPL8,an SBP-box gene that affects pollen sac development in Arabidopsis[J]. Plant Cell,2003,15(4):1009-1019.
[11]Zhang Y,Schwarz S,Saedler H,et al. SPL8,a local regulator in a subset of gibberellin-mediated developmental processes in Arabidopsis[J]. Plant Molecular Biology,2007,63(3):429-439.
[12]Birkenbihl R P,Jach G,Saedler H,et al. Functional dissection of the plant-specific SBP-domain:overlap of the DNA binding and nuclear localization domains[J]. Journal of Molecular Biology,2005,352(3):585-596.
[13]Cuo J,Song J,Wang F,et al. Genome-wide identification and expression analysis of rice cell cycle genes[J]. Plant Molecular Biology,2007,64(4):349-360.
[14]Yamasaki K,Kigawa T,Inoue M,et al. A novel zinc-binding motif revealed by solution structures of DNA-binding domains of Arabidopsis SBP-family transcription factors[J]. Journal of Molecular Biology,2004,337(1):49-63.
[15]Cardon G,Hhmann S,Klein J,et al. Molecular characterisation of the Arabidopsis SBP-box genes[J]. Gene,1999,237(1):91-104.
[16]Cardon G H,Hhmann S,Nettesheim K,et al. Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3:a novel gene involved in the floral transition[J]. Plant Journal,1997,12(2):367-377.
[17]Miura K,Ikeda M,Matsubara A,et al. OsSPL14 promotes panicle branching and higher grain productivity in rice[J]. Nature Genetics,2010,42(6):545-549.
[18]Hultquist J F,Dorweiler J E. Feminized tassels of maize mop1 and ts1 mutants exhibit altered levels of miR156 and specific SBP-box genes[J]. Planta,2008,229(1):99-113.
[19]刘霞,张斌,毛新国,等. 小麦tae-miR156前体基因的克隆及基靶基因TaSPL17多态性分析[J]. 遗传,2014,36(6):592-602.
[20]Salinas M,Xing S P,Hhmann S,et al. Genomic organization,phylogenetic comparison and differential expression of the SBP-box family of transcription factors in tomato[J]. Planta,2012,235(6):1171-1184.
[21]Gandikota M,Birkenbihl R P,Hhmann S,et al. The miRNA156/157 recognition element in the 3′ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings[J]. Plant Journal,2010,49(4):683-693.
[22]Stone J M,Liang X W,Nekl E R,et al. Arabidopsis AtSPL14,a plant-specific SBP-domain transcription factor,participates in plant development and sensitivity to fumonisin B1[J]. The Plant Journal,2005,41(5):744-754.
[23]Schwarz S,Grande A V,Bujdoso N,et al. The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis[J]. Plant Molecular Biology,2008,67(1/2):183-195.
[24]Manning K,Tr M,Poole M,et al. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening[J]. Nature Genetics,2006,38:948-952.
[25]Wang Y,Hu Z L,Yang Y X,et al. Function annotation of an SBP-box gene in Arabidopsis based on analysis of co-expression networks and promoters[J]. International Journal of Molecular Sciences,2009,10(1):116-132.

相似文献/References:

[1]何从亮,毛久庚,甘小虎,等.玻璃温室番茄长季节基质袋栽培技术[J].江苏农业科学,2013,41(04):158.
[2]李永灿,余文贵,陈怀谷,等.番茄灰霉病菌产毒条件优化[J].江苏农业科学,2013,41(05):94.
 Li Yongcan,et al.Optimization of toxigenic conditions of tomato Botrytis cinerea[J].Jiangsu Agricultural Sciences,2013,41(20):94.
[3]赵秋月,甘潇,张广臣.Na2CO3胁迫对番茄幼苗生长的影响[J].江苏农业科学,2013,41(05):128.
 Zhao Qiuyue,et al.Effect of Na2CO3 stress on growth of tomato seedlings[J].Jiangsu Agricultural Sciences,2013,41(20):128.
[4]耿德刚,徐俊伟,戈振超,等.温室大棚番茄滴灌试验研究及效益分析[J].江苏农业科学,2013,41(05):132.
 Geng Degang,et al.Drip irrigation experimental and benefit analysis on greenhouse tomato[J].Jiangsu Agricultural Sciences,2013,41(20):132.
[5]杜中平,聂书明.不同配方基质对番茄生长特性、光合特性及产量的影响[J].江苏农业科学,2013,41(05):138.
 Du Zhongping,et al.Effects of different substrates on growth,photosynthetic characteristics and yield of tomato[J].Jiangsu Agricultural Sciences,2013,41(20):138.
[6]赵河,毛秀杰,叶景学.抗叶霉病不同基因型番茄的光合特性[J].江苏农业科学,2014,42(11):185.
 Zhao He,et al(8).Photosynthetic characteristics of different genotypes of tomato with resistance to leaf mold[J].Jiangsu Agricultural Sciences,2014,42(20):185.
[7]陈素娟,孙娜娜.不同基质配比对番茄秧苗生长的影响[J].江苏农业科学,2013,41(06):128.
 Chen Sujuan,et al.Effect of different substrate compositions on growth of tomato seedling[J].Jiangsu Agricultural Sciences,2013,41(20):128.
[8]孙禛禛,吴秋霞,温新宇,等.转反义LetAPX基因番茄抗氧化酶活性在苗期、花期、果期的变化[J].江苏农业科学,2015,43(12):188.
 Sun Zhenzhen,et al.Study on antioxidant enzymes activity during seedling,flowering and fruiting of tomato with antisense LetAPX gene[J].Jiangsu Agricultural Sciences,2015,43(20):188.
[9]李晓慧,张恩让,何玉安,等.亚高温及外源物质调节下番茄的生理响应[J].江苏农业科学,2013,41(07):135.
 Li Xiaohui,et al.Physiological response of tomato under the regulation of sub-high temperature and exogenous substances[J].Jiangsu Agricultural Sciences,2013,41(20):135.
[10]李建宏,张楠,张泽,等.番茄红素提取与测定方法的优化[J].江苏农业科学,2013,41(08):259.
 Li Jianhong,et al.Optimization of lycopene extraction and determination method[J].Jiangsu Agricultural Sciences,2013,41(20):259.

备注/Memo

备注/Memo:
收稿日期:2021-03-08
基金项目:国家重点研发计划(编号:2019YFD100070、2019YFD100071、2019YFD1001300、2019YFD1001303);现代农业产业技术体系项目(编号:CARS-10-B1);国家自然科学基金(编号:31670278、31970200、31970312、31901993、31872078);安徽省科技重大项目(编号:16030701073);中央高校基础研究基金(编号:JZ2018HGTB0241、JZ 20181)。
作者简介:荣誉磊(1992—),男,安徽阜阳人,硕士,研究方向为采后生物学。E-mail:990953597@qq.com。
通信作者:胡康棣,博士,副教授,研究方向为采后生物学,E-mail:kangdihu@hfut.edu.cn;张华,博士,教授,研究方向为植物分子生物学,E-mail:hzhanglab@hfut.edu.cn。
更新日期/Last Update: 2021-10-20