|本期目录/Table of Contents|

[1]林静,张云辉,张所兵,等.水稻地方品种高抗性淀粉含量QTL挖掘与定位[J].江苏农业科学,2021,49(23):58-61.
 Lin Jing,et al.Mining and mapping of QTLs for high-resistant starch content in rice landraces[J].Jiangsu Agricultural Sciences,2021,49(23):58-61.
点击复制

水稻地方品种高抗性淀粉含量QTL挖掘与定位(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第49卷
期数:
2021年第23期
页码:
58-61
栏目:
生物技术
出版日期:
2021-12-05

文章信息/Info

Title:
Mining and mapping of QTLs for high-resistant starch content in rice landraces
作者:
林静 张云辉 张所兵 陈海元 朱晓妹 唐伟杰 方先文
江苏省农业科学院种质资源与生物技术研究所/江苏省农业种质资源保护与利用平台,江苏南京 210014
Author(s):
Lin Jinget al
关键词:
水稻重组自交系抗性淀粉QTLs
Keywords:
-
分类号:
S511.01
DOI:
-
文献标志码:
A
摘要:
以高抗性淀粉籼稻品种扎西玛和江苏省著名优质粳稻南粳46为亲本构建的重组自交系为材料,运用AOAC法测定了群体家系的抗性淀粉含量,用于QTL分析的分子连锁图谱包含202个SSR分子标记。本研究共检测到2个加性QTL:qRS-6和qRS-8,分别位于第6和第8染色体上,共解释58.38%的表型变异。其中,来源于高值亲本扎西玛的qRS-6贡献率高达51.38%,是一个主效的QTL位点;来源于低值亲本南粳46的qRS-8贡献率只有7%。结果可为高抗性淀粉水稻育种提供资源,进一步挖掘紧密连锁分子标记奠定基础。
Abstract:
-

参考文献/References:

[1]Englyst H,Wiggins H S,Cummings J H.Determination of the non-starch polysaccharides in plant foods by gas-liquid chromatography of constituent sugars as alditol acetates[J]. The Analyst,1982,107(1272):307-318.
[2]Kwak J H,Paik J K,Kim H I,et al. Dietary treatment with rice containing resistant starch improves markers of endothelial function with reduction of postprandial blood glucose and oxidative stress in patients with prediabetes or newly diagnosed type 2 diabetes[J]. Atherosclerosis,2012,224(2):457-464.
[3]Wang H S,Pang G C.Effect of resistant and digestible rice starches on human cytokine and lactate metabolic networks in serum[J]. Cytokine,2017,93:57-65.
[4]Ananda D,Zuhairini Y,Sutadipura N.Resistant starch in cooled white rice reduce glycaemic index[J]. Obesity Research & Clinical Practice,2013,7(1):38.
[5]吴伟,刘鑫,杨朝柱,等. 抗性淀粉及预防糖尿病和肥胖症功能稻米研究进展[J]. 核农学报,2006,20(1):60-63,22.
[6]Eggum B O,Juliano B O,Perez C M,et al. The resistant starch,undigestible energy and undigestible protein contents of raw and cooked milled rice[J]. Journal of Cereal Science,1993,18(2):159-170.
[7]Rosin P M,Lajolo F M,Menezes E W.Measurement and characterization of dietary starches[J]. Journal of Food Composition and Analysis,2002,15(4):367-377.
[8]Crosby G A. Resistant starch makes better carbs[J]. Funct Foods & Nutrace,2003(6):34-36.
[9]Kim W K,Chung M I K,Kang N,et al. Effect of resistant starch from corn or rice on glucose control,colonic events,and blood lipid concentrations in streptozotocin-induced diabetic rats[J]. The Journal of Nutritional Biochemistry,2003,14(3):166-172.
[10]Ashwar B A,Gani A,Wani I A,et al. Production of resistant starch from rice by dual autoclaving-retrogradation treatment:invitro digestibility,thermal and structural characterization[J]. Food Hydrocolloids,2016,56:108-117.
[11]Sun J A,Wu D X,Xu J Y,et al. Characterisation of starch during germination and seedling development of a rice mutant with a high content of resistant starch[J]. Journal of Cereal Science,2015,62:94-101.
[12]Itoh Y,Crofts N,Abe M,et al. Characterization of the endosperm starch and the pleiotropic effects of biosynthetic enzymes on their properties in novel mutant rice lines with high resistant starch and amylose content[J]. Plant Science,2017,258:52-60.
[13]Kiatponglarp W,Tongta S,Rolland-Sabaté A,et al. Crystallization and chain reorganization of debranched rice starches in relation to resistant starch formation[J]. Carbohydrate Polymers,2015,122:108-114.
[14]Pongjanta J,Utaipattanaceep A,Naivikul O,et al. Debranching enzyme concentration effected on physicochemical properties and α-amylase hydrolysis rate of resistant starch type III from amylose rice starch[J]. Carbohydrate Polymers,2009,78(1):5-9.
[15]Hung P V,Vien N L,Phi N T L.Resistant starch improvement of rice starches under a combination of acid and heat-moisture treatments[J]. Food Chemistry,2016,191:67-73.
[16]Chen M H,Bergman C J,McClung A M,et al. Resistant starch:variation among high amylose rice varieties and its relationship with apparent amylose content,pasting properties and cooking methods[J]. Food Chemistry,2017,234:180-189.
[17]牟方贵,闫宗武,冉瑞林,等. 水稻抗性淀粉相关SSR标记的初步研究[J]. 分子植物育种,2008,6(3):432-438.
[18]罗曦,黄锦峰,朱永生,等. 水稻功米3号高抗性淀粉性状的遗传分析[J]. 农业生物技术学报,2014,22(1):10-16.
[19]罗曦,黄锦峰,朱永生,等. 稻米抗性淀粉含量测定方法的比较分析[J]. 福建农业学报,2011,26(5):822-826.
[20]Wang J K,Wan X Y,Li H H,et al. Application of identified QTL-marker associations in rice quality improvement through a design-breeding approach[J]. Theoretical and Applied Genetics,2007,115(1):87-100.
[21]Mccouch S R,Cho Y G,Panl E,et al. Report on QTL nomenclature[J]. Rice Genet Newsl,1997,14:11-13.
[22]张云辉,张所兵,林静,等. 长穗型水稻地方品种中穗长QTL的挖掘与定位[J]. 分子植物育种,2018,16(12):3967-3972.
[23]游佳,谷晗,朱泽,等. 水稻粒质量和粒形QTL定位及粒长位点qGL3.2的鉴定[J]. 南京农业大学学报,2019,42(4):612-621.
[24]林静,张所兵,张云辉,等. 利用染色体片段置换系定位水稻抗纹枯病QTLs[J]. 江苏农业学报,2013,29(4):691-695.
[25]林静,张云辉,陈海元,等. 水稻地方品种苗期耐盐QTL的定位[J]. 华北农学报,2019,34(增刊1):1-5.
[26]Weng J F,Gu S H,Wan X Y,et al. Isolation and initial characterization of GW5,a major QTL associated with rice grain width and weight[J]. Cell Research,2008,18(12):1199-1209.
[27]Zhang X J,Wang J F,Huang J,et al. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(52):21534-21539.
[28]Ishimaru K,Hirotsu N,Madoka Y,et al. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield[J]. Nature Genetics,2013,45(6):707-711.
[29]Li Y B,Fan C C,Xing Y Z,et al. Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice[J]. Nature Genetics,2014,46(4):398-404.
[30]孙春龙. 水稻抗性淀粉含量性状的QTL定位及遗传分析[D]. 长春:吉林大学,2013.

相似文献/References:

[1]马旭俊,刘春娟,吕世博,等.绿色荧光蛋白基因在水稻遗传转化中的应用[J].江苏农业科学,2013,41(04):35.
[2]李岳峰,居立海,张来运,等.水分胁迫下丛枝菌根对水稻/绿豆间作系统 作物生长和氮磷吸收的影响[J].江苏农业科学,2013,41(04):58.
[3]崔月峰,孙国才,王桂艳,等.不同施氮水平和前氮后移措施对水稻产量 及氮素利用率的影响[J].江苏农业科学,2013,41(04):66.
[4]张其蓉,宋发菊,田进山,等.长江中下游稻区水稻区域试验品种抗稻瘟病鉴定与评价[J].江苏农业科学,2013,41(04):92.
[5]王麒,张小明,卞景阳,等.不同插秧密度对黑龙江省第二积温带水稻产量及产量构成的影响[J].江苏农业科学,2013,41(05):60.
 Wang Qi,et al.Effect of different transplanting density on yield and yield component of rice in second temperature zone of Heilongjiang Province[J].Jiangsu Agricultural Sciences,2013,41(23):60.
[6]张国良,张森林,丁秀文,等.基质厚度和含水量对水稻育秧的影响[J].江苏农业科学,2013,41(05):62.
 Zhang Guoliang,et al.Effects of substrate thickness and water content on growth of rice seedlings[J].Jiangsu Agricultural Sciences,2013,41(23):62.
[7]赵忠宝,朱清海.稻-蟹-鳅生态系统的能值分析[J].江苏农业科学,2013,41(05):349.
 Zhao Zhongbao,et al.Emergy analysis of paddy-crab-loach ecosystem[J].Jiangsu Agricultural Sciences,2013,41(23):349.
[8]杨红福,姚克兵,束兆林,等.甲氧基丙烯酸酯类杀菌剂对水稻恶苗病的田间药效[J].江苏农业科学,2014,42(12):166.
 Yang Hongfu,et al.Field efficacy of strobilurin fungicides against rice bakanae disease[J].Jiangsu Agricultural Sciences,2014,42(23):166.
[9]唐成,陈露,安敏敏,等.稻瘟病诱导水稻幼苗叶片氧化还原系统的特征谱变化[J].江苏农业科学,2014,42(12):141.
 Tang Cheng,et al.Characteristic spectral changes of redox homeostasis system in rice seedling leaves induced by rice blast[J].Jiangsu Agricultural Sciences,2014,42(23):141.
[10]万云龙.优质水稻—春甘蓝轮作高效栽培模式[J].江苏农业科学,2014,42(12):90.
 Wan Yunlong.Efficient cultivation mode of high quality rice-spring cabbage rotation[J].Jiangsu Agricultural Sciences,2014,42(23):90.
[11]梁文化,陈涛,姚姝,等.基于高密度遗传图谱定位水稻籽粒长宽比QTL[J].江苏农业科学,2021,49(23):47.
 Liang Wenhua,et al.QTL mapping for grain length-width ratio based on high-density genetic map in rice[J].Jiangsu Agricultural Sciences,2021,49(23):47.

备注/Memo

备注/Memo:
收稿日期:2021-03-16
基金项目:江苏省农业科技自主创新资金[编号:CX(18)1001]。
作者简介:林静(1981—),女,江苏海安人,硕士,副研究员,主要从事水稻资源研究。E-mail:534663739@qq.com。
更新日期/Last Update: 2021-12-05