|本期目录/Table of Contents|

[1]刘艺平,张一琪,苏 少文,等.混合盐碱胁迫下不同抗性荷花品种比较转录组分析[J].江苏农业科学,2022,50(3):1-8.
 Liu Yiping,et al.Comparative transcriptome analysis of different resistant lotus (Nelumbo nucifera) cultivars under mixed saline-alkali stress[J].Jiangsu Agricultural Sciences,2022,50(3):1-8.
点击复制

混合盐碱胁迫下不同抗性荷花品种比较转录组分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第3期
页码:
1-8
栏目:
“转录组”专题
出版日期:
2022-02-05

文章信息/Info

Title:
Comparative transcriptome analysis of different resistant lotus (Nelumbo nucifera) cultivars under mixed saline-alkali stress
作者:
刘艺平12 张一琪1苏 少文1 刘红利12 贺丹12 孔德政12
1.河南农业大学风景园林与艺术学院,河南郑州 450000; 2.河南省优质花卉蔬菜种苗工程研究中心,河南郑州 450000
Author(s):
Liu Yipinget al
关键词:
荷花盐碱胁迫转录组差异基因分子机制
Keywords:
-
分类号:
S682.320.1
DOI:
-
文献标志码:
A
摘要:
为研究荷花的耐盐碱机制,以混合盐碱胁迫处理前后的抗性荷花品种黄帅TO及敏感品种台湾磨盘莲SE为试验材料,进行转录组测序,并运用qRT-PCR 法验证测序结果的准确性。2个品种在混合盐碱胁迫下共检测到 4 916 个差异表达基因,其中,上调表达基因3 101个,下调表达基因1 815个,对抗性品种的49个特有差异基因进行分析发现,与细胞壁合成有关基因在耐盐碱胁迫中起着重要的作用;GO富集分析发现,敏感品种与抗性品种差异基因富集最多的条目相同,但敏感品种富集的差异基因数目更多,推测不同材料间基因功能的差异在决定材料特性时发挥着重要作用;KEGG通路分析表明,苯丙烷生物合成通路在抗性品种对盐碱胁迫的响应方面发挥了重要作用,而敏感品种抗性弱主要是由于其碳代谢系统紊乱。qRT-PCR结果表明,本次转录组测序结果可靠。荷花耐盐碱胁迫过程是一个复杂的生物学过程,包括生物过程、细胞组分和分子功能多个方面的基因参与,细胞壁合成有关基因是提高荷花耐盐碱能力的关键基因,苯丙烷生物合成、碳代谢很可能是造成2个荷花品种耐盐碱能力差异大小的重要原因。
Abstract:
-

参考文献/References:

[1]Ye X X,Wang H,Cao X L,et al. Transcriptome profiling of Puccinellia tenuiflora during seed germination under a long-term saline-alkali stress[J]. BMC Genomics,2019,20(1):589.
[2]Yin Z P,Zhang H,Zhao Q,et al. Physiological and comparative proteomic analyses of saline-alkali NaHCO3-responses in leaves of halophyte Puccinellia tenuiflora[J]. Plant and Soil,2019,437(1/2):137-158.
[3]Fang S M,Hou X,Liang X L.Response mechanisms of plants under saline-alkali stress[J]. Frontiers in Plant Science,2021,12:667458.
[4]Zhu J K.Abiotic stress signaling and responses in plants[J]. Cell,2016,167(2):313-324.
[5]王佺珍,刘倩,高娅妮,等. 植物对盐碱胁迫的响应机制研究进展[J]. 生态学报,2017,37(16):5565-5577.
[6]李晓薇,郭嘉,王鑫,等. 羊草液泡膜Na+/H+逆向转运蛋白基因LcNHX1的克隆及功能分析[J]. 中国草地学报,2017,39(5):1-9.
[7]Guan Q J,Wang Z J,Wang X H,et al. A peroxisomal APX from Puccinellia tenuiflora improves the abiotic stress tolerance of transgenic Arabidopsis thaliana through decreasing of H2O2 accumulation[J]. Journal of Plant Physiology,2015,175:183-191.
[8]Wang X,Ajab Z,Liu C X,et al. Overexpression of transcription factor SlWRKY28 improved the tolerance of Populus davidiana×P. bolleana to alkaline salt stress[J]. BMC Genetics,2020,21(1):103.
[9]张飞,王艳秋,朱凯,等. 不同耐盐性高粱在盐逆境下的比较转录组分析[J]. 中国农业科学,2019,52(22):4002-4015.
[10]Sui D Z,Wang B S.Transcriptome analysis reveals complex defensive mechanisms in salt-tolerant and salt-sensitive shrub willow genotypes under salinity stress[J]. International Journal of Genomics,2020,2020:6870157.
[11]王其超,张行言. 中国荷花品种图志[M]. 北京:中国林业出版社,2005.
[12]刘艺平,苏少文,张琳,等. 外源钙对荷花适应盐胁迫的影响[J]. 浙江农业学报,2020,32(2):243-252.
[13]Liu R J,Shi H T,Wang Y P,et al. Comparative physiological analysis of lotus (Nelumbo nucifera) cultivars in response to salt stress and cloning of NnCIPK genes[J]. Scientia Horticulturae,2014,173:29-36.
[14]Tang M F,Xu C,Cao H H,et al. Tomato calmodulin-like protein SlCML37 is a calcium (Ca2+) sensor that interacts with proteasome maturation factor SlUMP1 and plays a role in tomato fruit chilling stress tolerance[J]. Journal of Plant Physiology,2021,258/259:153373.
[15]Lampugnani E R,Khan G A,Somssich M,et al. Building a plant cell wall at a glance[J]. Journal of Cell Science,2018,131(2):jcs207373.
[16]Tenhaken R.Cell wall remodeling under abiotic stress[J]. Frontiers in Plant Science,2015,5:771.
[17]van Zelm E,Zhang Y X,Testerink C.Salt tolerance mechanisms of plants[J]. Annual Review of Plant Biology,2020,71:403-433.
[18]Liu J W,Zhang W,Long S J,et al. Maintenance of cell wall integrity under high salinity[J]. International Journal of Molecular Sciences,2021,22(6):3260.
[19]Zhao S S,Zhang Q K,Liu M Y,et al. Regulation of plant responses to salt stress[J]. International Journal of Molecular Sciences,2021,22(9):4609.
[20]Hu P,Zhang K M,Yang C P.BpNAC012 positively regulates abiotic stress responses and secondary wall biosynthesis[J]. Plant Physiology,2018,179(2):700-717.
[21]Guo H Y,Wang Y C,Wang L Q,et al. Expression of the MYB transcription factor gene BplMYB46 affects abiotic stress tolerance and secondary cell wall deposition in Betula platyphylla[J]. Plant Biotechnology Journal,2017,15(1):107-121.
[22]Arbona V,Argamasilla R,Gómez-Cadenas A.Common and divergent physiological,hormonal and metabolic responses of Arabidopsis thaliana and Thellungiella halophila to water and salt stress[J]. Journal of Plant Physiology,2010,167(16):1342-1350.
[23]Gong Q Q,Li P H,Ma S S,et al. Salinity stress adaptation competence in the extremophile Thellungiella Halophila in comparison with its relative Arabidopsis thaliana[J]. The Plant Journal,2005,44(5):826-839.
[24]Dixon R A,Paiva N L.Stress-induced phenylpropanoid metabolism[J]. The Plant Cell,1995,7(7):1085-1097.
[25]Li T,Huang Y,Khadr A,et al. DcDREB1A,a DREB-binding transcription factor from Daucus carota,enhances drought tolerance in transgenic Arabidopsis thaliana and modulates lignin levels by regulating lignin-biosynthesis-related genes[J]. Environmental and Experimental Botany,2020,169:103896.
[26]Chen K Q,Guo Y N,Song M R,et al. Dual role of MdSND1 in the biosynthesis of lignin and in signal transduction in response to salt and osmotic stress in apple[J]. Horticulture Research,2020,7:204.
[27]王莉,史玲玲,张艳霞,等. 植物次生代谢物途径及其研究进展[J]. 武汉植物学研究,2007,25(5):500-508.
[28]李合生. 现代植物生理学[M]. 3版.北京:高等教育出版社,2012.
[29]Shu L B,Lou Q J,Ma C F,et al. Genetic,proteomic and metabolic analysis of the regulation of energy storage in rice seedlings in response to drought[J]. Proteomics,2011,11(21):4122-4138.
[30]Shen Q F,Yu J H,Fu L B,et al. Ionomic,metabolomic and proteomic analyses reveal molecular mechanisms of root adaption to salt stress in Tibetan wild barley[J]. Plant Physiology and Biochemistry,2018,123:319-330.
[31]Zhong M,Yuan Y H,Shu S,et al. Effects of exogenous putrescine on glycolysis and Krebs cycle metabolism in cucumber leaves subjected to salt stress[J]. Plant Growth Regulation,2016,79(3):319-330.
[32]Stincone A,Prigione A,Cramer T,et al. The return of metabolism:biochemistry and physiology of the pentose phosphate pathway[J]. Biological Reviews,2015,90(3):927-963.
[33]Xing J H,Pan D Z,Wang L X,et al. Proteomic and physiological responses in mangrove Kandelia candel roots under short-term high-salinity stress[J]. Turkish Journal of Biology,2019,43(5):314-325.
[34]Chen Y B,Lu T C,Wang H X,et al. Posttranslational modification of maize chloroplast pyruvate orthophosphate dikinase reveals the precise regulatory mechanism of its enzymatic activity[J]. Plant Physiology,2014,165(2):534-549.
[35]Sonawane B V,Sharwood R E,Whitney S,et al. Shade compromises the photosynthetic efficiency of NADP-ME less than that of PEP-CK and NAD-ME C4 grasses[J]. Journal of Experimental Botany,2018,69(12):3053-3068.
[36]Guralnick L J,Gilbert K E,Denio D,et al. The development of crassulacean acid metabolism (CAM) photosynthesis in cotyledons of the C4 species,Portulaca grandiflora (Portulacaceae)[J]. Plants,2020,9(1):55.
[37]Gilman I S,Edwards E J.Crassulacean acid metabolism[J]. Current Biology,2020,30(2):57-62.

相似文献/References:

[1]徐君,李静会,李欣,等.荷花ISSR引物筛选及反应体系优化[J].江苏农业科学,2014,42(10):42.
 Xu Jun,et al.Screening of lotus ISSR primers and optimization of its reaction system[J].Jiangsu Agricultural Sciences,2014,42(3):42.
[2]王光野,曹高品,丁娇,等.盐碱混合胁迫对灰绿藜丙二醛积累的影响[J].江苏农业科学,2014,42(09):354.
 Wang Guangye,et al.Effect of mixed salinity-alkalinity stress on malondialdehyde accumulation of Chenopodium glaucum L.[J].Jiangsu Agricultural Sciences,2014,42(3):354.
[3]王小山,朱平华,鲍国成,等.盐碱胁迫对紫花苜蓿根、茎和叶重要养分离子平衡的影响[J].江苏农业科学,2013,41(07):190.
 Wang Xiaoshan,et al.Effect of salt stress on important nutrient ion balance in roots,stems and leaves of Medicago sativa[J].Jiangsu Agricultural Sciences,2013,41(3):190.
[4]方淑梅,梁喜龙,纪伟波,等.外源NO对盐碱胁迫下水稻幼苗生长抑制的缓解作用[J].江苏农业科学,2013,41(08):67.
 Fang Shumei,et al.Mitigative effect of exogenous nitric oxide on growth inhibition of rice seedlings under saline-alkali stress[J].Jiangsu Agricultural Sciences,2013,41(3):67.
[5]单成海.盐碱胁迫对洋葱部分理化特性的影响[J].江苏农业科学,2013,41(11):193.
 Shan Chenghai.Effect of saline-alkaline stress on partial physicochemical properties of onion[J].Jiangsu Agricultural Sciences,2013,41(3):193.
[6]姜红卫,李欣,江君,等.苏南观赏荷花设施栽培周年开花技术研究[J].江苏农业科学,2013,41(12):191.
 Jiang Hongwei,et al.Study on anniversary bloom of ornamental lotus in greenhouse of southern Jiangsu[J].Jiangsu Agricultural Sciences,2013,41(3):191.
[7]徐君,李欣,江君,等.不同花色荷花色素成分及稳定性分析[J].江苏农业科学,2016,44(02):331.
 Xu Jun,et al.nalysis of ingredients and stability of flower pigment of Nelumbo nucifera cultivars with different colors[J].Jiangsu Agricultural Sciences,2016,44(3):331.
[8]盖玉红,牛陆,董宝池,等.不同浓度盐、碱胁迫对野生大豆光合特性和生理生化特性的影响[J].江苏农业科学,2014,42(05):89.
 Gai Yuhong,et al.Effects of saline alkali stress on photosynthetic characteristics and physiological-biochemical characteristics of wild soybean[J].Jiangsu Agricultural Sciences,2014,42(3):89.
[9]李波,陈雪梅,于海龙,等.混合盐碱胁迫对苜蓿种子萌发特性的影响[J].江苏农业科学,2015,43(08):221.
 Li Bo,et al.Effect of mixed salt and alkali stress on seed germination of alfalfa[J].Jiangsu Agricultural Sciences,2015,43(3):221.
[10]王鑫,朱悦,刘滨硕,等.盐碱胁迫下羊草抗氧化酶活性的变化[J].江苏农业科学,2015,43(05):209.
 Wang Xin,et al.Study on activities of antioxidant enzymes of Leymus chinensis under alkali-saline stress[J].Jiangsu Agricultural Sciences,2015,43(3):209.

备注/Memo

备注/Memo:
收稿日期:2021-09-12
基金项目:国家自然科学基金(编号:31600568);河南省高等学校重点研究项目(编号:21A220003);河南农业大学科技创新基金(编号: KJCX2017C01)。
作者简介:刘艺平(1977—),女,河南温县人,博士,副教授,主要从事荷花耐盐碱胁迫方面的研究。E-mail:lyp_163@163.com。
通信作者:孔德政,博士,教授,主要从事荷花耐盐碱胁迫方面的研究。 E-mail:kdz217@163.com。
更新日期/Last Update: 2022-02-05