|本期目录/Table of Contents|

[1]洪森荣,柯维忠,陶月琴,等.怀玉山三叶青2个栽培种试管苗对干旱胁迫的生理响应及相关基因的表达[J].江苏农业科学,2022,50(4):117-125.
 Hong Senrong,et al.Physiological response of test tube seedlings of two Tetrastigma hemsleyanum cultivars in Huaiyu Mountain to drought stress and expression of related genes[J].Jiangsu Agricultural Sciences,2022,50(4):117-125.
点击复制

怀玉山三叶青2个栽培种试管苗对干旱胁迫的生理响应及相关基因的表达(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第4期
页码:
117-125
栏目:
园艺与林学
出版日期:
2022-02-20

文章信息/Info

Title:
Physiological response of test tube seedlings of two Tetrastigma hemsleyanum cultivars in Huaiyu Mountain to drought stress and expression of related genes
作者:
洪森荣1234 柯维忠1234 陶月琴1 戴云龙1 安永盼1 符卉卉1 阿提克穆·麦麦提1 蔡红5 陈荣华5
1.上饶师范学院生命科学学院,江西上饶 334001; 2.上饶农业技术创新研究院,江西上饶 334001;3.上饶市药食同源植物资源保护与利用重点实验室,江西上饶 334001;4.上饶市三叶青保育与利用技术创新中心,江西上饶 334001; 5.上饶市红日农业开发有限公司,江西上饶 334700
Author(s):
Hong Senronget al
关键词:
怀玉山三叶青栽培种试管苗干旱胁迫生理响应相关基因表达
Keywords:
-
分类号:
Q945.78
DOI:
-
文献标志码:
A
摘要:
为了探究怀玉山三叶青2个栽培种试管苗对干旱胁迫的生理响应,为其高山大棚有效栽培提供理论依据。以怀玉山三叶青怀玉1号、怀玉2号试管苗为试验材料,进行PEG-6000模拟干旱胁迫处理,通过主成分分析和隶属函数法综合评价怀玉山三叶青2个栽培种试管苗抗旱性的强弱,并通过荧光定量PCR分析干旱胁迫下怀玉山三叶青2个栽培种试管苗相关基因的表达情况。结果表明,随着PEG-6000浓度的增加,怀玉1号、怀玉2号试管苗的株高和生物量整体上呈先稳后降的趋势,可溶性蛋白(SP)、可溶性糖(SS)、游离脯氨酸(Pro)和K+含量以及抗氧化酶[超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)]活性整体上呈先升后降的趋势,而相对电导率(RC)、丙二醛(MDA)含量和Na+含量则呈显著提高的态势,茎、根Ca2+含量无显著变化。根据隶属函数分析结果,怀玉山三叶青2个栽培种试管苗的耐旱性为怀玉2号>怀玉1号;主成分分析结果表明,第1个主成分中较大的指标有POD、CAT活性和Pro含量,第2个主成分中较大的指标有RC、SOD活性和MDA含量,第3个主成分中较大的指标有SS、K+和Ca2+含量;轻度干旱和中度干旱有助于脱落酸、茉莉酸、乙烯、赤霉素、生长素等内源激素含量的提高,也有利于怀玉山三叶青黄酮醇和查尔酮的合成,但不利于怀玉山三叶青烟草花叶病毒的增殖。由研究结果可知,适度干旱胁迫可以提高内源激素和次生代谢物的含量,抑制病毒增殖,促进怀玉山三叶青的生长发育,相关研究结果可为怀玉山三叶青抗旱种源的筛选提供参考依据。
Abstract:
-

参考文献/References:

[1]Chen X,Tao L,Ru Y,et al. Antibacterial mechanism of Tetrastigma hemsleyanum Diels et Gilgs polysaccharides by metabolomics based on HPLC/MS[J]. International Journal of Biological Macromolecules,2019,140:206-215.
[2]Zhang X B,Lei L,Lai J S,et al. Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings[J]. BMC Plant Biology,2018,18:68.
[3]Hussain M,Farooq S,Hasan W,et al. Drought stress in sunflower:Physiological effects and its management through breeding and agronomic alternatives[J]. Agricultural Water Management,2018,201:152-166.
[4]Kapilan R,Vaziri M,Zwiazek J J. Regulation of aquaporins in plants under stress[J]. Biological Research,2018,51(1):4.
[5]冯慧芳,薛立,任向荣,等. 4种阔叶幼苗对PEG模拟干旱的生理响应[J]. 生态学报,2011,31(2):371-382.
[6]郭瑞,郝卫平,龚道枝. PEG-6000模拟水分胁迫对不同抗旱性冬小麦生理生态指标的影响[J]. 作物杂志,2012(5):43-47.
[7]赵方媛,田新会,杜文华. PEG-6000模拟干旱胁迫对15个小黑麦品系苗期生理特性的影响[J]. 干旱地区农业研究,2019,37(5):106-113.
[8]许爱云,曹兵,谢 云. 干旱风沙区煤炭基地12种草本植物对干旱胁迫的生理生态响应及抗旱性评价[J]. 草业学报,2020,29(10):22-34.
[9]由佳辉,高林,王海鸥,等. 干旱胁迫对 9 个葡萄砧木品种生理指标的影响[J]. 经济林研究,2020,38(3):180-189.
[10]钱丽华,阮松林,戴丹丽,等. 温度对三叶青组培苗SOD、MDA等指标的影响[J]. 浙江农业科学,2010(5):972-974.
[11]杨华,宋绪忠,陈磊. 不同遮阴处理的三叶崖爬藤光合作用特性[J]. 林业工程学报,2010,24(5):57-59.
[12]吴志庄,高贵宾,欧建德,等. 生物炭肥对毛竹林下三叶青叶绿素含量、光合与荧光特性的影响[J]. 西北林学院学报,2017,32(5):59-63,103.
[13]周武,张善华. 不同有机肥对药用植物三叶青化感物质的影响[J]. 丽水学院学报,2017,39(2):66-71.
[14]Green J J,Baddley J A,Cortina J,et al. Root development in the Mediterranean shrub Pistacia lentiscus as affected by nursery treatments[J]. Journal of Arid Environments,2005,61(1):1-12.
[15]Wu G Q,Feng R J,Liang N,et al. Sodium chloride stimulates growth and alleviates sorbitol-induced osmotic stress in sugar beet seedlings[J]. Plant Growth Regulation,2015,75(1):307-316.
[16]李玲,李娘辉,蒋素梅. 植物生理学模块实验指导[M]. 北京:科学出版社,2008.
[17]李合生. 植物生理生化实验原理与技术[M]. 北京:高等教育出版社,2002.
[18]Chen J X,Wang X F. Guide to plant physiology experiments[M]. 2nd ed. Guangzhou:South China University of Technology Press,2006:64-66.
[19]Lu Y J,Li N Y,Sun J,et al. Exogenous hydrogen peroxide,nitric oxide and calcium mediate root ion fluxes in two non-secretor mangrove species subjected to NaCl stress[J]. Tree Physiology,2013,33(1):81-95.
[20]Giannopolitis C N,Ries S K. Superoxide dismutases:Ⅰ. Occurrence in higher plants[J]. Plant Physiology,1977,59(2):309-314.
[21]Havir E A,McHale N A. Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves[J]. Plant Physiology,1987,84(2):450-455.
[22]海霞,刘景辉,杨彦明,等. 盐胁迫对燕麦幼苗Na+、K+吸收和离子积累的影响[J]. 麦类作物学报,2019,39(5):613-620.
[23]Chen Q,Yu H W,Wang X R,et al. An alternative cetyltrimethylammonium bromide-based protocol for RNA isolation from blackberry (Rubus L.)[J]. Genetics & Molecular Research,2012,11(2):1773-1782.
[24]时丽冉,刘志华. 干旱胁迫对苣荬菜抗氧化酶和渗透调节物质的影响[J]. 草地学报,2010,18(5):673-677.
[25]Shinozali K,Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance[J]. Journal of Experimental Botany,2007,58(2):221-227.
[26]李玉华,范春丽,雷志华,等. 两个玉米品种在萌芽期和苗期的干旱耐性比较分析[J]. 西北大学学报(自然科学版),2020,50(5):703-710.
[27]李军宏,王远远,夏军,等. 两个不同耐旱性棉花品种根系生理特性对干旱的响应[J]. 应用生态学报,2020,31(10):3453-3460.
[28]Zhang J,Kirkham M B. Drought-stress-induced changes in activities of superoxide dismutase,catalase,and peroxidase in wheat species[J]. Plant and Cell Physiology,1993,35(5):785-791.
[29]Farooq M,Wahid A,Kobayashi N,et al. Plant drought stress:effects,mechanisms and management[J]. Agronomy for Sustainable Development,2009,29(1):185-212.
[30]Barber V A,Juday G P,Finney B P. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress[J]. Nature,2000,405(6787):668-673.
[31]侯佩臣,王晓冬,王美娟,等. 干旱胁迫下旱稻和水稻对K+和Ca2+的动态吸收研究[J]. 安徽农学通报,2013,19(23):5-7.
[32]杨子,曾长英,王斌,等. 干旱胁迫对木薯 K+、Ca2+和ABA的影响[J]. 热带作物学报,2013,34(9):1725-1729.
[33]沈思言,徐艳霞,马春雷,等. 干旱处理对不同品种茶树生理特性影响及抗旱性综合评价[J]. 茶叶科学,2019,39(2):171-180.
[34]邱爽,何佳琦,李铭杨,等. 大豆GmGolS基因的原核表达及抗旱性分析[J]. 江苏农业科学,2020,48(14):61-65.
[35]李瑶,隋晓青,郝裕辉,等. 干旱胁迫下新疆7份野生披碱草属种质材料萌发特性与抗旱性评价[J]. 新疆农业科学,2020,57(5):958-966.
[36]石永红,万里强,刘建宁,等. 多年生黑麦草抗旱性主成分及隶属函数分析[J]. 草地学报,2010,18(5):669-672.
[37]张鹏钰,王国瑞,曹丽茹,等. 干旱胁迫和复水处理下玉米差异表达转录因子基因分析[J]. 农业生物技术学报,2020,28(2):211-222.
[38]谢博洋,曹喜兵,张雯宇,等. 干旱胁迫对豫杂一号泡桐基因表达谱的影响[J]. 河南农业大学学报,2019,53(6):876-883.
[39]连玲,张建福,许惠滨,等. PEG模拟干旱胁迫对水稻抗氧化酶基因表达的影响[J]. 福建农业学报,2019,34(3):255-263.

相似文献/References:

[1]彭浩,陈文强,邓百万,等.陕南10种黑木耳主要栽培种酯酶同工酶的研究[J].江苏农业科学,2014,42(09):193.
 Peng Hao,et al.Study on esterase isozymes of 10 kinds of major black fungus cultivars in the south of Shaanxi Province[J].Jiangsu Agricultural Sciences,2014,42(4):193.
[2]尹明华,陈佳雯,陈瑞,等.怀玉山三叶青烟草病毒增殖蛋白3基因克隆和功能分析[J].江苏农业科学,2022,50(6):32.
 Yin Minghua,et al.Cloning and functional analysis of tobacco virus multiplication protein 3 gene of Tetrastigma hemsleyanum Diels et Gilg in Huaiyushan[J].Jiangsu Agricultural Sciences,2022,50(4):32.
[3]夏瑾华,李丹丹,李然,等.怀玉山三叶青烟草病毒增殖蛋白2A-like基因克隆及其功能分析[J].江苏农业科学,2023,51(2):36.
 Xia Jinhua,et al.Gene cloning and function analysis of tobamovirus multiplication protein 2A-like gene of Tetrastigma hemsleyanum Diels et Gilg in Huaiyushan[J].Jiangsu Agricultural Sciences,2023,51(4):36.

备注/Memo

备注/Memo:
收稿日期:2021-05-22
基金项目:国家自然科学基金(编号:31960079);江西省科技厅重点研发计划一般项目(编号:20192BBGL70050、20202BBG73010);江西省教育厅科学技术研究项目(编号:GJJ201704);上饶市科技局重点研发计划一般项目(编号:2020C002);上饶市科技局平台载体建设项目(编号:2020J001、2019I017)。
作者简介:洪森荣(1974—),男,江西永新人,硕士,教授,研究方向为植物生物技术。E-mail:hongsenrong@163.com。
更新日期/Last Update: 2022-02-20