|本期目录/Table of Contents|

[1]顾鹏鹏,马鑫磊,姚锐,等.谷子HSP90基因家族鉴定及干旱胁迫下表达分析[J].江苏农业科学,2022,50(6):45-52.
 Gu Pengpeng,et al.Identification and expression analysis of HSP90 genes family in foxtail millet (Setaria italica L.) under drought stress[J].Jiangsu Agricultural Sciences,2022,50(6):45-52.
点击复制

谷子HSP90基因家族鉴定及干旱胁迫下表达分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第6期
页码:
45-52
栏目:
生物技术
出版日期:
2022-03-20

文章信息/Info

Title:
Identification and expression analysis of HSP90 genes family in foxtail millet (Setaria italica L.) under drought stress
作者:
顾鹏鹏 马鑫磊 姚锐 高慧 林小虎
河北省作物逆境生物学重点实验室/河北科技师范学院农学与生物科技学院,河北秦皇岛 066004
Author(s):
Gu Pengpenget al
关键词:
热激蛋白90基因家族干旱胁迫表达分析谷子
Keywords:
-
分类号:
S515.01
DOI:
-
文献标志码:
A
摘要:
热激蛋白90 (heat shock proteins 90,HSP90) 是广泛存在于植物中的一种高度保守的细胞伴侣蛋白家族,参与调节和维持各种蛋白质的构象,在植物的生物和非生物胁迫应激反应中起着重要作用。为探讨谷子HSP90基因家族(SiHSP90s)在干旱胁迫下的潜在抗旱功能,对SiHSP90s进行鉴定,并分析其在干旱胁迫下的表达情况。共鉴定出9个SiHSP90基因分别位于谷子5条染色体上。理化性质分析显示SiHSP90s蛋白长度为403~817个氨基酸,分子量为46.1~92.7 ku。系统进化分析显示SiHSP90s分为Ⅰ型和Ⅱ型2个亚家族。基因结构与蛋白基序分析显示,Ⅰ型和Ⅱ型亚族成员的外显子数量分别在2~3个和12~20个之间,且均含有保守的HATPase_c(PF02518)和HSP90(PF00183)结构域。顺式元件分析表明,SiHSP90s基因可以应对不同的非生物胁迫。qRT-PCR结果表明,干旱胁迫下SiHSP90.2和SiHSP90.3转录水平极显著上调。这些结果为阐明SiHSP90家族的进化关系以及进一步研究SiHSP90基因的功能特性提供了有价值的信息。
Abstract:
-

参考文献/References:

[1]Chaves M M,Maroco J P,Pereira J S. Understanding plant responses to drought-from genes to the whole plant[J]. Functional Plant Biology,2003,30(3):239-264.
[2]Fatima A,Hussain S,Hussain S,et al. Differential morphophysiological,biochemical,and molecular responses of maize hybrids to salinity and alkalinity stresses[J]. Agronomy,2021,11(6):1150.
[3]Nakashima K,Yamaguchi-Shinozaki K.Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants[J]. Physiologia Plantarum,2006,126(1):62-71.
[4]Gao G Z,Hu J H,Zhang X J,et al. Transcriptome analysis reveals genes expression pattern of seed response to heat stress in Brassica napus L.[J]. Oil Crop Science,2021,6(2):87-96.
[5]Sangster T A,Queitsch C.The HSP90 chaperone complex,an emerging force in plant development and phenotypic plasticity[J]. Current Opinion in Plant Biology,2005,8(1):86-92.
[6]Al-Whaibi M H.Plant heat-shock proteins:a mini review[J]. Journal of King Saud University-Science,2011,23(2):139-150.
[7]Pearl L H,Prodromou C.Structure and in vivo function of Hsp90[J]. Current Opinion in Structural Biology,2000,10(1):46-51.
[8]Terasawa K,Minami M,Minami Y.Constantly updated knowledge of Hsp90[J]. Journal of Biochemistry,2005,137(4):443-447.
[9]Pearl L H,Prodromou C.Structure and mechanism of the Hsp90 molecular chaperone machinery[J]. Annual Review of Biochemistry,2006,75:271-294.
[10]Hainzl O,Lapina M C,Buchner J,et al. The charged linker region is an important regulator of Hsp90 function[J]. Journal of Biological Chemistry,2009,284(34):22559-22567.
[11]Sung N,Lee J,Kim J H,et al. Mitochondrial Hsp90 is a ligand-activated molecular chaperone coupling ATP binding to dimer closure through a coiled-coil intermediate[J]. PNAS,2016,113(11):2952-2957.
[12]Raman S,Suguna K.Functional characterization of heat-shock protein 90 from Oryza sativa and crystal structure of its N-terminal domain[J]. Acta Crystallographica.Section F,Structural Biology Communications,2015,71(Pt 6):688-696.
[13]Morán Luengo T,Mayer M P,Rüdiger S G D.The Hsp70-Hsp90 chaperone cascade in protein folding[J]. Trends in Cell Biology,2019,29(2):164-177.
[14]Shinozaki F,Minami M,Chiba T,et al. Depletion of Hsp90 β induces multiple defects in B cell receptor signaling[J]. The Journal of Biological Chemistry,2006,281(24):16361-16369.
[15]Zuehlke A,Johnson J L.Hsp90 and co-chaperones twist the functions of diverse client proteins[J]. Biopolymers,2010,93(3):211-217.
[16]Agarwal G,Garg V,Kudapa H,et al. Genome-wide dissection of AP2/ERF and HSP90 gene families in five legumes and expression profiles in chickpea and pigeonpea[J]. Plant Biotechnology Journal,2016,14(7):1563-1577.
[17]Grigorova B,Vaseva I,Demirevska K,et al. Combined drought and heat stress in wheat:changes in some heat shock proteins[J]. Biologia Plantarum,2011,55(1):105-111.
[18]di Donato M,Geisler M.HSP90 and co-chaperones:a multitaskers view on plant hormone biology[J]. FEBS Letters,2019,593(13):1415-1430.
[19]Song H M,Zhao R M,Fan P X,et al. Overexpression of AtHsp90.2,AtHsp90.5 and AtHsp90.7 in Arabidopsis thaliana enhances plant sensitivity to salt and drought stresses[J]. Planta,2009,229(4):955-964.
[20]Song Z P,Pan F L,Yang C,et al. Genome-wide identification and expression analysis of HSP90 gene family in Nicotiana tabacum[J]. BMC Genetics,2019,20(1):35.
[21]Lv D W,Subburaj S,Cao M,et al. Proteome and phosphoproteome characterization reveals new response and defense mechanisms of Brachypodium distachyon leaves under salt stress[J]. Molecular & Cellular Proteomics,2014,13(2):632-652.
[22]Hao P C,Zhu J T,Gu A Q,et al. An integrative proteome analysis of different seedling organs in tolerant and sensitive wheat cultivars under drought stress and recovery[J]. Proteomics,2015,15(9):1544-1563.
[23]Nadeem F,Ahmad Z,Ul Hassan M,et al. Adaptation of foxtail millet (Setaria italica L.) to abiotic stresses:a special perspective of responses to nitrogen and phosphate limitations[J]. Frontiers in Plant Science,2020,11:187.
[24]Lata C R,Gupta S,Prasad M.Foxtail millet:a model crop for genetic and genomic studies in bioenergy grasses[J]. Critical Reviews in Biotechnology,2013,33(3):328-343.
[25]Muthamilarasan M,Prasad M.Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses[J]. Theoretical and Applied Genetics,2015,128(1):1-14.
[26]Bennetzen J L,Schmutz J,Wang H,et al. Reference genome sequence of the model plant Setaria[J]. Nature Biotechnology,2012,30(6):555-561.
[27]Zhang M,Shen Z W,Meng G Q,et al. Genome-wide analysis of the Brachypodium distachyon (L.) P. Beauv. Hsp90 gene family reveals molecular evolution and expression profiling under drought and salt stresses[J]. PLoS One,2017,12(12):e0189187.
[28]Xu J Y,Xue C C,Xue D,et al. Overexpression of GmHsp90s,a heat shock protein 90 (Hsp90) gene family cloning from soybean,decrease damage of abiotic stresses in Arabidopsis thaliana[J]. PLoS One,2013,8(7):e69810.
[29]Zai W S,Miao L X,Xiong Z L,et al. Comprehensive identification and expression analysis of Hsp90s gene family in Solanum lycopersicum[J]. Genetics and Molecular Research,2015,14(3):7811-7820.
[30]Zhang K J,He S S,Sui Y H,et al. Genome-wide characterization of HSP90 gene family in cucumber and their potential roles in response to abiotic and biotic stresses[J]. Frontiers in Genetics,2021,12:584886.
[31]刘云飞,万红建,杨悦俭,等. 番茄热激蛋白90的全基因组鉴定及分析[J]. 遗传,2014,36(10):1043-1052.
[32]Yamada K,Fukao Y,Hayashi M,et al. Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana[J]. The Journal of Biological Chemistry,2007,282(52):37794-37804.
[33]Liu H,Lyu H M,Zhu K K,et al. The emergence and evolution of intron-poor and intronless genes in intron-rich plant gene families[J]. The Plant Journal,2021,105(4):1072-1082.
[34]Jin Z W,Chandrasekaran U,Liu A Z.Genome-wide analysis of the Dof transcription factors in Castor bean (Ricinus communis L.)[J]. Genes & Genomics,2014,36(4):527-537.
[35]LaPointe P,Mercier R,Wolmarans A.Aha-type co-chaperones:the alpha or the Omega of the Hsp90 ATPase cycle?[J]. Biological Chemistry,2020,401(4):423-434.
[36]Meyer P,Prodromou C,Hu B,et al. Structural and functional analysis of the middle segment of Hsp90:implications for ATP hydrolysis and client protein and cochaperone interactions[J]. Molecular Cell,2003,11(3):647-658.
[37]Yang Z F,Zhou Y,Wang X F,et al. Genomewide comparative phylogenetic and molecular evolutionary analysis of tubby-like protein family in Arabidopsis,rice,and poplar[J]. Genomics,2008,92(4):246-253.
[38]Muppala S,Gudlavalleti P K,Malireddy K R,et al. Development of stable transgenic maize plants tolerant for drought by manipulating ABA signaling through Agrobacterium-mediated transformation[J]. Journal,Genetic Engineering & Biotechnology,2021,19(1):96.

相似文献/References:

[1]霍如雪,刘振宁,杨青,等.桃PME基因家族的鉴定与分析[J].江苏农业科学,2016,44(05):24.
 Huo Ruxue,et al.Identification and analysis of PME gene family in peach[J].Jiangsu Agricultural Sciences,2016,44(6):24.
[2]霍如雪,刘振宁,杨青,等.桃PG基因家族的鉴定与分析[J].江苏农业科学,2016,44(06):33.
 Huo Ruxue,et al.Identification and analysis of PG gene family in peach[J].Jiangsu Agricultural Sciences,2016,44(6):33.
[3]盖江涛,沈建凯,王鹏.主要作物中PAL基因家族的鉴定和序列分析[J].江苏农业科学,2016,44(06):45.
 Gai Jiangtao,et al.Identification and sequence analysis of PAL gene family in main crops[J].Jiangsu Agricultural Sciences,2016,44(6):45.
[4]王婷婷,仇有文,王沛文,等.番茄热激转录因子HSF家族的系统进化分析[J].江苏农业科学,2016,44(01):48.
 Wang Tingting,et al.Phylogenetic analysis of HSF family of tomato heat shock transcription factor[J].Jiangsu Agricultural Sciences,2016,44(6):48.
[5]马明臻.草莓MADS-box基因家族生物信息学分析[J].江苏农业科学,2015,43(11):21.
 Ma Mingzhen.Genome-wide bioinformatics analysis of MADS-box gene family in strawberry[J].Jiangsu Agricultural Sciences,2015,43(6):21.
[6]杜丽,李勇鹏,姚瑶.成花基因FT/TFL1基因家族及其对植物成花转变遗传改良的研究进展[J].江苏农业科学,2014,42(07):9.
 Du Li,et al.Research progress on FT/TFL1 gene family and its genetic improvement to floral transition[J].Jiangsu Agricultural Sciences,2014,42(6):9.
[7]侯巨梅,崔佳,左豫虎,等.玉米致病菌新月弯孢漆酶基因家族鉴定与分子结构特征分析[J].江苏农业科学,2015,43(06):32.
 Hou Jumei,et al.Identification and molecular structure analysis of laccase family from Curvularia lunata[J].Jiangsu Agricultural Sciences,2015,43(6):32.
[8]胡珍珠,杨志辉,刁琢,等.子囊菌门无性产孢brlA基因家族的系统发育分析[J].江苏农业科学,2016,44(07):48.
 Hu Zhenzhu,et al.Phylogenetic analysis of asexual sporulation brlA gene family in Ascomycota[J].Jiangsu Agricultural Sciences,2016,44(6):48.
[9]钟静,胡颖,陈亚波,等.玉米FLA蛋白家族的生物信息学分析[J].江苏农业科学,2017,45(07):23.
 Zhong Jing,et al.Bioinformatics analysis of FLA protein family in maize[J].Jiangsu Agricultural Sciences,2017,45(6):23.
[10]韩林贺,丁安明,孔英珍.普通烟草PMEI家族的鉴定与表达分析[J].江苏农业科学,2018,46(09):34.
 Han Linhe,et al.Genome-wide identification and expression analysis of the PMEI family in Nicotiana tabacum[J].Jiangsu Agricultural Sciences,2018,46(6):34.

备注/Memo

备注/Memo:
收稿日期:2021-07-06
基金项目:国家“十三五”重点研发计划(编号:2019YFD1001701-2);河北省现代农业产业技术体系创新团队(杂粮杂豆)项目(编号:HBCT2018070404);河北省自然科学基金(编号:C2019407001);河北省高等学校科学技术研究项目(编号:QN2020154);河北省在读研究生创新能力培养资助项目(编号:CXZZSS2021152)。
作者简介:顾鹏鹏(1994—),男,山东滨州人,硕士研究生,主要从事植物分子遗传与基因工程研究。E-mail:1006555310@qq.com。
通信作者:林小虎,博士,教授,主要从事植物遗传学研究。E-mail:xiaohulin2008@163.com。
更新日期/Last Update: 2022-03-20