|本期目录/Table of Contents|

[1]王喜英,赵辉,谭智勇,等.设施菜地种植年限对土壤nosZ型反硝化微生物群落结构和丰度的影响[J].江苏农业科学,2022,50(9):240-247.
 Wang Xiying,et al.Effects of cultivation years in protected vegetable crop fields on structure and abundance of soil nosZ denitrifying microbial community[J].Jiangsu Agricultural Sciences,2022,50(9):240-247.
点击复制

设施菜地种植年限对土壤nosZ型反硝化微生物群落结构和丰度的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第9期
页码:
240-247
栏目:
资源与环境
出版日期:
2022-05-05

文章信息/Info

Title:
Effects of cultivation years in protected vegetable crop fields on structure and abundance of soil nosZ denitrifying microbial community
作者:
王喜英赵辉谭智勇余高
铜仁学院,贵州铜仁 554300
Author(s):
Wang Xiyinget al
关键词:
设施菜地种植年限反硝化微生物nosZ基因群落结构
Keywords:
-
分类号:
S182
DOI:
-
文献标志码:
A
摘要:
反硝化微生物在土壤氮素损失和温室气体转化方面具有重要的作用,研究设施菜地土壤反硝化微生物群落结构和数量变化,对评价设施菜地长期种植土壤质量状况和提高氮转化认知水平具有重要意义。应用荧光定量PCR和 Illumina Miseq高通量测序技术,以nosZ基因为靶标,研究设施菜地种植3、5、7年和露天菜地(CK)对土壤反硝化微生物群落结构和数量的影响。结果表明:露天菜地(CK)nosZ基因丰度显著高于其他处理,分别是3、5、7年的1.32倍、1.45倍和1.69倍。随种植年限延长,nosZ基因丰度逐渐降低。不同处理土壤反硝化微生物群落α多样性指数差异显著,α多样性指数随种植年限延长逐渐降低,且露天菜地(CK)的Chao1指数和ACE指数最高。门水平上优势类群为变形菌门;属水平上优势类群为慢生根瘤菌属和无色杆菌属;变形菌门和慢生根瘤菌属相对丰度随设施种植年限延长逐渐降低。主成分分析(PCA)结果表明,随种植年限延长nosZ群落结构差异较大;其中3年和5 年群落结构相似,7、3、5 年群落结构差异较大。土壤速效钾、铵态氮和硝态氮含量是nosZ型反硝化微生物数量、α多样性和群落结构的主要影响因素。综上可知,设施菜地长期种植显著降低了nosZ型反硝化微生物数量,并对群落结构有显著影响。
Abstract:
-

参考文献/References:

[1]Hu W Y,Zhang Y X,Huang B,et al. Soil environmental quality in greenhouse vegetable production systems in eastern China:current status and management strategies[J]. Chemosphere,2017,170:183-195.
[2]荣勤雷.有机肥/秸秆替代化肥模式对设施菜田土壤团聚体微生物特性的影响[D]. 北京:中国农业科学院,2018.
[3]宁德富,孔丽琼,汤娜,等. 不同种植年限蔬菜地土壤养分变化规律研究[J]. 四川农业大学学报,2016,34(1):67-72.
[4]Sun J T,Pan L L,Zhan Y,et al. Contamination of phthalate esters,organochlorine pesticides and polybrominated diphenyl ethers in agricultural soils from the Yangtze River Delta of China[J]. Science of the Total Environment,2016,544:670-676.
[5]van der Heijden M G A,Wagg C.Soil microbial diversity and agro-ecosystem functioning[J]. Plant and Soil,2013,363(1/2):1-5.
[6]Yao Z Y,Xing J J,Gu H P,et al. Development of microbial community structure in vegetable-growing soils from open-field to plastic-greenhouse cultivation based on the PLFA analysis[J]. Journal of Soils and Sediments,2016,16(8):2041-2049.
[7]Li X G,Ding C F,Zhang T L,et al. Fungal pathogen accumulation at the expense of plant-beneficial fungi as a consequence of consecutive peanut monoculturing[J]. Soil Biology and Biochemistry,2014,72:11-18.
[8]Xiong W,Li R,Ren Y,et al. Distinct roles for soil fungal and bacterial communities associated with the suppression of Vanilla Fusarium wilt disease[J]. Soil Biology and Biochemistry,2017,107:198-207.
[9]Liu X,Zhang Y,Ren X J,et al. Long-term greenhouse vegetable cultivation alters the community structures of soil ammonia oxidizers[J]. Journal of Soils and Sediments,2019,19(2):883-902.
[10]李生秀.中国旱地土壤植物氮素[M]. 北京:科学出版社,2008:3-5.
[11]Kuypers M M M,Marchant H K,Kartal B.The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology,2018,16(5):263-276.
[12]Thomson A J,Giannopoulos G,Pretty J,et al. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions[J]. Philosophical Transactions of the Royal Society(B:Biological Sciences),2012,367(1593):1157-1168.
[13]杨亚东,宋润科,马俊永,等. 长期氮磷不同施用量对土壤细菌、硝化与反硝化微生物数量的影响[J]. 中国农业大学学报,2018,23(9):81-88.
[14]Hu H W,Chen D L,He J Z.Microbial regulation of terrestrial nitrous oxide formation:understanding the biological pathways for prediction of emission rates[J]. FEMS Microbiology Reviews,2015,39(5):729-749.
[15]Shcherbak I,Millar N,Robertson G P.Global meta-analysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen[J]. PNAS,2014,111(25):9199-9204.
[16]Ravishankara A R,Daniel J S,Portmann R W.Nitrous oxide (N2O):the dominant ozone-depleting substance emitted in the 21st century[J]. Science,2009,326(5949):123-125.
[17]Hallin S,Philippot L,Lffler F E,et al. Genomics and ecology of novel N2O-reducing microorganisms[J]. Trends in Microbiology,2018,26(1):43-55.
[18]Schreiber F,Wunderlin P,Udert K M,et al. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities:biological pathways,chemical reactions,and novel technologies[J]. Frontiers in Microbiology,2012,3:372.
[19]Domeignoz-Horta L,Putz M,Spor A,et al. Non-denitrifying nitrous oxide-reducing bacteria-An effective N2O sink in soil[J]. Soil Biology and Biochemistry,2016,103:376-379.
[20]陈秀波,朱德全,赵晨晨,等. 凉水国家自然保护区不同林型红松林土壤nosZ型反硝化微生物群落组成和多样性分析[J]. 林业科学,2019,55(8):106-117.
[21]Dandie C E,Burton D L,Zebarth B J,et al. Changes in bacterial denitrifier community abundance over time in an agricultural field and their relationship with denitrification activity[J]. Applied and Environmental Microbiology,2008,74(19):5997-6005.
[22]鲍士旦.土壤农化分析[M]. 3版.北京:中国农业出版社,2000:25-114.
[23]Chen Z,Hou H J,Zheng Y,et al. Influence of fertilisation regimes on a nosZ-containing denitrifying community in a rice paddy soil[J]. Journal of the Science of Food and Agriculture,2012,92(5):1064-1072.
[24]Kloos K,Mergel A,Rosch C,et al. Denitrification within the genus Azospirillum and other associative bacteria[J]. Functional Plant Biology,2001,28(9):991-998.
[25]宋蒙亚,李忠佩,吴萌,等. 不同种植年限设施菜地土壤微生物量和群落结构的差异[J]. 中国农业科学,2015,48(18):3635-3644.
[26]王学霞,陈延华,王甲辰,等. 设施菜地种植年限对土壤理化性质和生物学特征的影响[J]. 植物营养与肥料学报,2018,24(6):1619-1629.
[27]Liu Y,Liu X Y,Feng Y F,et al. Composition of a soil organic carbon increment under different vegetable cultivation patterns:a study using three SOC pools[J]. Sustainability,2018,11(1):35.
[28]Wang Y,Xu H,Wu X,et al. Quantification of net carbon flux from plastic greenhouse vegetable cultivation:a full carbon cycle analysis[J]. Environmental Pollution,2011,159(5):1427-1434.
[29]Song Y,Xu M,Li X N,et al. Long-term plastic greenhouse cultivation changes soil microbial community structures:a case study[J]. Journal of Agricultural and Food Chemistry,2018,66(34):8941-8948.
[30]高新昊,张英鹏,刘兆辉,等. 种植年限对寿光设施大棚土壤生态环境的影响[J]. 生态学报,2015,35(5):1452-1459.
[31]Yang L Q,Huang B A,Hu W Y,et al. The impact of greenhouse vegetable farming duration and soil types on phytoavailability of heavy metals and their health risk in Eastern China[J]. Chemosphere,2014,103:121-130.
[32]Hallin S,Jones C M,Schloter M,et al. Relationship between N-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment[J]. The ISME Journal,2009,3(5):597-605.
[33]田浩,杨柳青,曹文超,等. 设施菜田与棚外粮田土壤菌群和反硝化气体产生的比较分析[J]. 微生物学通报,2015,42(5):835-844.
[34]Bergaust L,Mao Y J,Bakken L R,et al. Denitrification response patterns during the transition to anoxic respiration and posttranscriptional effects of suboptimal pH on nitrous oxide reductase in Paracoccus denitrificans[J]. Applied and Environmental Microbiology,2010,76(19):6387-6396.
[35]Menyailo O V,Huwe B.Activity of denitrification and dynamics of N2O release in soils under six tree species and grassland in central Siberia[J]. Journal of Plant Nutrition and Soil Science,1999,162(5):533-538.
[36]Matlou M C,Haynes R J.Soluble organic matter and microbial biomass C and N in soils under pasture and arable management and the leaching of organic C,N and nitrate in a lysimeter study[J]. Applied Soil Ecology,2006,34(2/3):160-167.
[37]Bowden R D,Davidson E,Savage K,et al. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest[J]. Forest Ecology and Management,2004,196(1):43-56.
[38]Enwall K,Philippot L,Hallin S.Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization[J]. Applied and Environmental Microbiology,2005,71(12):8335-8343.
[39]Tang Y Q,Zhang X Y,Li D D,et al. Impacts of nitrogen and phosphorus additions on the abundance and community structure of ammonia oxidizers and denitrifying bacteria in Chinese fir plantations[J]. Soil Biology and Biochemistry,2016,103:284-293.
[40]Yaganza E S,Rioux D,Simard M,et al. Ultrastructural alterations of Erwinia carotovora subsp. atroseptica caused by treatment with aluminum chloride and sodium metabisulfite[J]. Applied and Environmental Microbiology,2004,70(11):6800-6808.
[41]Bauhus J,Khanna P K.Carbon and nitrogen turnover in two acid forest soils of southeast Australia as affected by phosphorus addition and drying and rewetting cycles[J]. Biology and Fertility of Soils,1994,17(3):212-218.
[42]Liu C X,Dong Y H,Sun Q W,et al. Soil bacterial community response to short-term manipulation of the nitrogen deposition form and dose in a Chinese fir plantation in southern China[J]. Water,Air,& Soil Pollution,2016,227(12):1-12.
[43]彭卫福.土壤肥力对水稻氮素利用效率和氮循环相关微生物的影响[D]. 南昌:江西农业大学,2017.
[44]万盼,胡艳波,张弓乔,等. 甘肃小陇山油松与柴胡栽培土壤细菌群落特征[J]. 生态学报,2018,38(17):6016-6024.
[45]King D,Nedwell D B.The influence of nitrate concentration upon the end-products of nitrate dissimilation by bacteria in anaerobic salt marsh sediment[J]. FEMS Microbiology Letters,1985,31(1):23-28.

相似文献/References:

[1]孙霞,杜俊龙,黄长福,等.典型干旱荒漠绿洲区不同年限枣园土壤碳库特征[J].江苏农业科学,2016,44(10):484.
 Sun Xia,et al.Soil organic carbon characteristics of jujube orchards with different years in typical arid desert oasis region[J].Jiangsu Agricultural Sciences,2016,44(9):484.
[2]贺婧,王建宇,王菲.西瓜连作及倒茬对压砂地土壤酶活性的影响[J].江苏农业科学,2017,45(06):294.
 He Jing,et al.Effects of continuous planting watermelon and rotation of crops on soil enzyme activity of gravel mulched field[J].Jiangsu Agricultural Sciences,2017,45(9):294.
[3]李本措,塔林葛娃,李月梅,等.青海高原东部设施农业区土壤氮素时空累积及淋失风险评价[J].江苏农业科学,2019,47(03):244.
 Li Bencuo,et al.Spatio-temporal accumulation and risk assessment of soil nitrogen in facility agriculture area of eastern Qinghai Plateau[J].Jiangsu Agricultural Sciences,2019,47(9):244.
[4]韦小了,何季,何腾兵,等.种植年限对刺梨园土壤微生物数量和酶活性的影响[J].江苏农业科学,2019,47(13):280.
 Wei Xiaoliao,et al.Effects of planting years on soil microbial quantity and enzyme activity in Rosa roxburghii Tratt orchard[J].Jiangsu Agricultural Sciences,2019,47(9):280.
[5]柳小兰,王科,王道平,等.碳酸盐岩地区不同种植年限的黄壤重金属含量特征及评价[J].江苏农业科学,2019,47(16):308.
 Liu Xiaolan,et al.Characteristics and evaluation of heavy metal content in yellow soil with different planting ages in carbonate areas[J].Jiangsu Agricultural Sciences,2019,47(9):308.
[6]熊鹏飞,周颖,孙超,等.不同种植年限白芨块茎微量元素含量、富集特征及其影响因素研究[J].江苏农业科学,2021,49(21):165.
 Xiong Pengfei,et al.Study on trace element content,enrichment characteristics and influencing factors of Bletilla striata (Thunb.) Reichb. f tuber in different planting years[J].Jiangsu Agricultural Sciences,2021,49(9):165.
[7]于淼,池景良.种植年限对设施土壤微生物熵及生态化学计量特征的影响[J].江苏农业科学,2022,50(11):234.
 Yu Miao,et al.Influences of different planting years on microbial entropy and ecological stoichiometric characteristics of greenhouse soil[J].Jiangsu Agricultural Sciences,2022,50(9):234.

备注/Memo

备注/Memo:
收稿日期:2021-08-01
基金项目:贵州省教育厅自然科学研究项目(编号:黔教合KY字[2020]163);铜仁学院博士科研启动基金(编号:tyxyDH2002);铜仁学院农业生态创新研究项目(编号:CXTD[2020-10]);绿色农药与农业生物工程教育部重点实验室开放基金(编号:黔教合KY字[2019]036);贵州省教育厅青年科技人才成长项目(编号:黔教合KY字[2019]175)。
作者简介:王喜英(1981—),女,河南汝南人,硕士,讲师,研究方向为生物化学及生物信息学分
更新日期/Last Update: 2022-05-05