|本期目录/Table of Contents|

[1]夏雄飞,潘俊良,韩长志.CRISPR/Cas9基因编辑技术在植物病原真菌中的应用研究进展[J].江苏农业科学,2022,50(12):22-27.
 Xia Xiongfei,et al.Research progress on application of CRISPR/Cas9 gene editing technology in plant pathogenic fungi[J].Jiangsu Agricultural Sciences,2022,50(12):22-27.
点击复制

CRISPR/Cas9基因编辑技术在植物病原真菌中的应用研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第12期
页码:
22-27
栏目:
专论与综述
出版日期:
2022-06-20

文章信息/Info

Title:
Research progress on application of CRISPR/Cas9 gene editing technology in plant pathogenic fungi
作者:
夏雄飞1潘俊良1韩长志12
1.西南林业大学生物多样性保护学院,云南昆明 650224; 2.云南省森林灾害预警与控制重点实验室,云南昆明 650224
Author(s):
Xia Xiongfeiet al
关键词:
CRISPR/Cas9植物病原真菌基因编辑研究综述
Keywords:
-
分类号:
S432.4+4
DOI:
-
文献标志码:
A
摘要:
CRISPR/Cas9是在细菌、古细菌基因组中含有的一种成簇有规律的间隔短回文重复序列,该结构被其用于抵御外来微生物基因入侵。通过对上述结构进行改装从而形成一种基因编辑方法,与传统的锌指核酶和转录激活因子样效应物核酶基因编辑方法相比,CRISPR/Cas9基因编辑技术具有更高效的优势。本文以CRISPR/Cas9系统的组成、作用机制和运用原理为切入点,系统总结了该技术在植物病原真菌(稻瘟病菌、橡胶树胶孢炭疽菌、玉米黑粉病菌等)中的致病相关基因组定点编辑应用情况,明确了当前在植物病原真菌中应用CRISPR/Cas9系统的编辑效率整体较低,不同sgRNA设计工具、目的等对编辑效率、靶向特异性的潜在影响,以及宏观突变检验方式的偏差问题等局限性,并提出了该系统应用范围的扩大、编辑效率的提高以及新型编辑方式的挖掘等建议与展望。
Abstract:
-

参考文献/References:

[1]王福军,赵开军. 基因组编辑技术应用于作物遗传改良的进展与挑战[J]. 中国农业科学,2018,51(1):1-16.
[2]张佳珊,谭韬. CRISPR-Cas9系统编辑DNA诱导基因敲除的发展及优缺点[J]. 中国免疫学杂志,2019,35(6):767-770.
[3]李宇恒,邓诚思,关爱伟,等. 利用CRISPR/Cas9技术建立PTEN敲除的人子宫内膜腺癌细胞模型及其功能研究[J]. 中国医科大学学报,2020,49(7):582-585.
[4]张道微,张超凡,董芳,等. CRISPR/Cas9系统在培育抗病毒植物新种质中的应用[J]. 遗传,2016,38(9):811-820.
[5]Zhang S J,Guo F,Yan W,et al. Recent advances of CRISPR/Cas9-based genetic engineering and transcriptional regulation in industrial biology[J]. Frontiers in Bioengineering and Biotechnology,2020,7:459.
[6]Jinek M,Chylinski K,Fonfara I,et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science,2012,337(6096):816-821.
[7]Doudna J A,Charpentier E. The new frontier of genome engineering with CRISPR-Cas9[J]. Science,2014,346(6213):1258096.
[8]李红花,刘钢. CRISPR/Cas9在丝状真菌基因组编辑中的应用[J]. 遗传,2017,39(5):355-367.
[9]Horvath P,Barrangou R. CRISPR/Cas,the immune system of bacteria and archaea[J]. Science,2010,327(5962):167-170.
[10]Dance A. Core Concept:CRISPR gene editing[J]. PNAS,2015,112(20):6245-6246.
[11]栗晓飞,曹英秀,宋浩. CRISPR/Cas9系统研究进展[J]. 中国生物工程杂志,2017,37(10):86-92.
[12]李亚男. 高海拔土壤中稻瘟病拮抗细菌的筛选及其抗菌机理研究[D]. 绵阳:西南科技大学,2017:1-2.
[13]Arazoe T,Miyoshi K,Yamato T,et al. Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus[J]. Biotechnology and Bioengineering,2015,112(12):2543-2549.
[14]Jacobs J Z,Ciccaglione K M,Tournier V,et al. Implementation of the CRISPR-Cas9 system in fission yeast[J]. Nature Communications,2014,5:5344.
[15]Foster A J,Martin-Urdiroz M,Yan X,et al. CRISPR-Cas9 ribonucleoprotein-mediated co-editing and counterselection in the rice blast fungus[J]. Scientific Reports,2018,8:14355.
[16]Yamato T,Handa A,Arazoe T,et al. Single crossover-mediated targeted nucleotide substitution and knock-in strategies with CRISPR/Cas9 system in the rice blast fungus[J]. Scientific Reports,2019,9:7427.
[17]林春花,孙董董,韩丹,等. 中国橡胶树苗圃2种炭疽病菌分子鉴定及分布分析[J]. 热带作物学报,2014,35(9):1802-1808.
[18]蔡志英,黄贵修. 巴西橡胶树炭疽病研究进展[J]. 西南林业大学学报,2011,31(1):89-93.
[19]Montague T G,Cruz J M,Gagnon J A,et al. CHOPCHOP:a CRISPR/Cas9 and TALEN web tool for genome editing[J]. Nucleic Acids Research,2014,42(W1):W401-W407.
[20]郭燕华,安邦. 基于CRISPR-Cas9技术构建橡胶树胶孢炭疽菌的基因敲除系统[J]. 微生物学通报,2020,47(1):109-117.
[21]Zhang C,Meng X H,Wei X L,et al. Highly efficient CRISPR mutagenesis by microhomology-mediated end joining in Aspergillus fumigatus[J]. Fungal Genetics and Biology,2016,86:47-57.
[22]Nakamura M,Okamura Y,Iwai H. Plasmid-based and-free methods using CRISPR/Cas9 system for replacement of targeted genes in Colletotrichum sansevieriae[J]. Scientific Reports,2019,9:18947.
[23]梁爽. 玉米抗瘤黑粉病QTL定位[D]. 沈阳:沈阳农业大学,2018:5-6.
[24]Schuster M,Schweizer G,Reissmann S,et al. Genome editing in Ustilago maydis using the CRISPR-Cas system[J]. Fungal Genetics and Biology,2016,89:3-9.
[25]Huck S,Bock J,Girardello J,et al. Marker-free genome editing in Ustilago trichophora with the CRISPR-Cas9 technology[J]. RNA Biology,2019,16(4):397-403.
[26]Wege S M,Gejer K,Becker F,et al. Versatile CRISPR/Cas9 systems for genome editing in Ustilago maydis[J]. Journal of Fungi,2021,7(2):149.
[27]Wenderoth M,Pinecker C,Vo B,et al. Establishment of CRISPR/Cas9 in Alternaria alternata[J]. Fungal Genetics and Biology,2017,101:55-60.
[28]Idnurm A,Urquhart A S,Vummadi D R,et al. Spontaneous and CRISPR/Cas9-induced mutation of the osmosensor histidine kinase of the canola pathogen Leptosphaeria maculans[J]. Fungal Biology and Biotechnology,2017,4:12.
[29]Ferrara M,Haidukowski M,Logrieco A F,et al. A CRISPR-Cas9 system for genome editing of Fusarium proliferatum[J]. Scientific Reports,2019,9:19836.
[30]蒋黎艳. 柑橘中5种链格孢霉毒素检测技术及产生分布规律初探[D]. 重庆:西南大学,2016:15-17.
[31]Ndvig C S,Nielsen J B,Kogle M E,et al. A CRISPR-Cas9 system for genetic engineering of filamentous fungi[J]. PLoS One,2015,10(7):e0133085.
[32]Wenderoth M,Garganese F,Schmidt-Heydt M,et al. Alternariol as virulence and colonization factor of Alternaria alternata during plant infection[J]. Molecular Microbiology,2019,112(1):131-146.
[33]张佳星,李玲,戴德江,等. 白术枯斑病原鉴定、生物学特性及其对不同药剂的敏感性研究[J]. 植物病理学报,2018,48(5):682-692.
[34]Zou Z W,Liu F,Selin C,et al. Generation and characterization of a virulent Leptosphaeria maculans isolate carrying a mutated AvrLm7 gene using the CRISPR/Cas9 system[J]. Frontiers in Microbiology,2020,11:1969.
[35]Darma R,Lutz A,Elliott C E,et al. Identification of a gene cluster for the synthesis of the plant hormone abscisic acid in the plant pathogen Leptosphaeria maculans[J]. Fungal Genetics and Biology,2019,130:62-71.
[36]孙丽. 南大西洋深海沉积物源可培养细菌的鉴定及抑真菌活性[D]. 哈尔滨:哈尔滨工业大学,2014:2-3.
[37]Wang Q,Cobine P A,Coleman J J. Efficient genome editing in Fusarium oxysporum based on CRISPR/Cas9 ribonucleoprotein complexes[J]. Fungal Genetics and Biology,2018,117:21-29.
[38]Wang Q,Coleman J J.CRISPR/Cas9-mediated endogenous gene tagging in Fusarium oxysporum[J]. Fungal Genetics and Biology,2019,126:17-24.
[39]Erard N,Knott S R V,Hannon G J. A CRISPR resource for individual,combinatorial,or multiplexed gene knockout[J]. Molecular Cell,2017,67(2):348-354.e4.
[40]Heigwer F,Kerr G,Boutros M.E-CRISP:fast CRISPR target site identification[J]. Nature Methods,2014,11(2):122-123.
[41]Dean R,van Kan J A L,Pretorius Z A,et al. The Top 10 fungal pathogens in molecular plant pathology[J]. Molecular Plant Pathology,2012,13(4):414-430.
[42]范德佳,陈士强,王建华,等. 利用CRISPR/Cas技术改良作物抗病性的研究进展[J]. 江苏农业学报,2020,36(5):1312-1321.
[43]Matsu-Ura T,Baek M,Kwon J,et al. Efficient gene editing in Neurospora crassa with CRISPR technology[J]. Fungal Biology and Biotechnology,2015,2:4.
[44]张晨,雷展,李凯,等. CRISPR/Cas9系统中的脱靶效应及检测技术研究进展[J]. 生物技术通报,2020,36(3):78-87.
[45]Yin H,Song C Q,Suresh S,et al. Partial DNA-guided Cas9 enables genome editing with reduced off-target activity[J]. Nature Chemical Biology,2018,14(3):311-316.

相似文献/References:

[1]彭静静.植物病原真菌中MAPK级联通路研究进展[J].江苏农业科学,2014,42(09):11.
 Peng Jingjing.Research progress of MAPK cascades in phytopathogenic fungi[J].Jiangsu Agricultural Sciences,2014,42(12):11.
[2]尤双,曹洋,李村院,等.靶向兔肌肉生长抑制素基因CRISPR/Cas9载体的构建和活性分析[J].江苏农业科学,2018,46(06):34.
 You Shuang,et al.Construction and activity analysis of targeted CRISPR/Cas9 MSTN gene vector[J].Jiangsu Agricultural Sciences,2018,46(12):34.
[3]李莉梅,欧阳乐军,尹爱国,等.1种大片段敲除巨桉细胞分裂素氧化酶基因的CRISPR载体构建[J].江苏农业科学,2018,46(12):19.
 Li Limei,et al.Construction of eucalyptus genome editing vector by using CRISPR/Cas9 system and knockout Klenow fragment of cytokinin oxidase/dehydrogenase gene[J].Jiangsu Agricultural Sciences,2018,46(12):19.
[4]沈明晨,薛超,乔中英,等.CRISPR/Cas9系统在水稻中的发展和利用[J].江苏农业科学,2019,47(10):5.
 Shen Mingcheng,et al.Development and utilization of CRISPR/Cas9 system in rice[J].Jiangsu Agricultural Sciences,2019,47(12):5.
[5]马斯霜,白海波,惠建,等.CRISPR/Cas9技术及其在水稻和小麦遗传改良中的应用综述[J].江苏农业科学,2019,47(20):29.
 Ma Sishuang,et al.Application of CRISPR/Cas9 technology in rice and wheat genetic improvement:a review[J].Jiangsu Agricultural Sciences,2019,47(12):29.
[6]刘雪,关丽杰.苯丙烯菌酮对水稻稻瘟病病原真菌细胞壁膜的作用[J].江苏农业科学,2019,47(22):117.
 Liu Xue,et al.Antibacterial effects of isobavachalcone on cell wall and membrane of Magnaporthe grisea[J].Jiangsu Agricultural Sciences,2019,47(12):117.
[7]汪少丽,王英姿,王洪涛,等.γ-聚谷氨酸对6种植物病原真菌的室内毒力测定[J].江苏农业科学,2020,48(05):110.
 Wang Shaoli,et al.Indoor toxicity determination of γ-polyglutamic acid to six plant pathogenic funguses[J].Jiangsu Agricultural Sciences,2020,48(12):110.
[8]曹兴林,恽君雯,陈丽,等.基于CRISPR/Cas9系统的MDCK细胞IFN-β1编码序列的敲除[J].江苏农业科学,2020,48(07):59.
 Cao Xinglin,et al.Knockout of IFN-β1 in MDCK cells based on CRISPR/Cas9 system[J].Jiangsu Agricultural Sciences,2020,48(12):59.
[9]李星坤,潘慧,李攀,等.基于CRISPR/Cas9系统的拟南芥ugt84a1/ugt84a2双突变体制作及突变位点分析[J].江苏农业科学,2020,48(20):49.
 Li Xingkun,et al.Construction of Arabidopsis ugt84a1/ugt84a2 double mutant and analysis of mutation site based on CRISPR/Cas9 system[J].Jiangsu Agricultural Sciences,2020,48(12):49.
[10]张二豪,张杰.CRISPR/Cas9基因编辑技术应用于绿僵菌[J].江苏农业科学,2021,49(11):48.
 Zhang Erhao,et al.CRISPR/Cas9-mediated genome editing in Metarhizium acridum[J].Jiangsu Agricultural Sciences,2021,49(12):48.

备注/Memo

备注/Memo:
收稿日期:2021-09-03
基金项目:国家自然科学基金(编号:31960314);云南省“兴滇英才支持计划”青年人才专项(编号:YNWR-QNBJ-2020-188);云南省应用基础研究计划(编号:2018FG001-028)。
作者简介:夏雄飞(1996—),男,安徽合肥人,硕士研究生,主要从事资源利用与植物保护研究,E-mail:616385792@qq.com;共同第一作者:潘俊良(1988—),男,上海人,硕士研究生,主要从事资源利用与植物保护研究,E-mail:panjunliang@sh.chinamobile.com。
通信作者:韩长志,博士,教授,主要从事经济林木病害生物防治与真菌分子生物学研究。E-mail:hanchangzhi2010@163.com。
更新日期/Last Update: 2022-06-20