|本期目录/Table of Contents|

[1]王月,王鲁鑫,李浩天,等.不同磷水平下CO2浓度升高对番茄光合特性和抗氧化酶活性的影响[J].江苏农业科学,2022,50(12):163-167.
 Wang Yue,et al.Influences of elevated CO2 concentration on photosynthetic characteristics and antioxidant enzyme activities of tomato seedlings under different phosphorus levels[J].Jiangsu Agricultural Sciences,2022,50(12):163-167.
点击复制

不同磷水平下CO2浓度升高对番茄光合特性和抗氧化酶活性的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第12期
页码:
163-167
栏目:
园艺与林学
出版日期:
2022-06-20

文章信息/Info

Title:
Influences of elevated CO2 concentration on photosynthetic characteristics and antioxidant enzyme activities of tomato seedlings under different phosphorus levels
作者:
王月1王鲁鑫1李浩天1刘兴斌2韩晓日1
1.沈阳农业大学土地与环境学院,辽宁沈阳 110866; 2.沈阳化工研究院生物与医药所,辽宁沈阳 110021
Author(s):
Wang Yueet al
关键词:
番茄CO2浓度升高低磷光合作用抗氧化酶活性
Keywords:
-
分类号:
S145.3;S641.206
DOI:
-
文献标志码:
A
摘要:
通过水培试验研究在低磷(2 μmol/L)、磷充足(2 mmol/L)条件下,大气中不同CO2浓度[(400±50)、(800±50) μmol/mol]对番茄光合特性和抗氧化酶活性的影响。结果表明,磷充足条件下,CO2浓度升高可以显著促进番茄叶片光合速率的提高;而低磷抑制了这种作用。磷充足时,CO2浓度升高显著增加了叶绿素含量,并且叶绿素b含量的增幅明显大于叶绿素a含量;而低磷条件下,CO2浓度升高显著降低了叶绿素含量。与磷充足相比,低磷条件下,番茄叶片的超氧化物歧化酶、过氧化物酶、过氧化氢酶活性明显降低,丙二醛含量升高。但CO2浓度升高明显促进了3种抗氧化酶的活性,并且磷充足条件下促进作用更为显著,同时降低了MDA的含量。因此CO2浓度升高条件下,磷素充足供应可以促进CO2浓度升高产生的正效应。
Abstract:
-

参考文献/References:

[1]Kumar A,Nayak A K,Sah R P,et al. Effects of elevated CO2 concentration on water productivity and antioxidant enzyme activities of rice (Oryza sativa L.) under water deficit stress[J]. Field Crops Research,2017,212:61-72.
[2]Redda A R,Rasinen G K,Raghawendra A S. The impact of global elevated CO2 concentration on photosynthesis and plant productivity[J]. Current Science,2010,99(1):46-57.
[3]DeLucia E H,Hamilton J G,Naidu S L,et al. Net primary production of a forest ecosystem with experimental CO2 enrichment[J]. Science,1999,284(5417):1177-1179.
[4]郝兴宇,韩雪,李萍,等. 大气CO2浓度升高对绿豆叶片光合作用及叶绿素荧光参数的影响[J]. 应用生态学报,2011,22(10):2776-2780.
[5]刘超,胡正华,陈健,等. 不同CO2浓度升高水平对水稻光合特性的影响[J]. 生态环境学报,2018,27(2):246-254.
[6]Long S P,Ainsworth E A,Rogers A,et al. Rising atmospheric carbon dioxide:plants FACE the future[J]. Annual Review of Plant Biology,2004,55:591-628.
[7]Pinter Jr P J,Idso S B,Hendrix D L,et al. Effect of free-air CO2 enrichment on the chlorophyll content of cotton leaves[J]. Agricultural and Forest Meteorology,1994,70(1/2/3/4):163-169.
[8]Rao M V,Hale B A,Ormrod D P. Amelioration of ozone-induced oxidative damage in wheat plants grown under high carbon dioxide (role of antioxidant enzymes)[J]. Plant Physiology,1995,109(2):421-432.
[9]Reeves D W,Rogers H H,Prior S A,et al. Elevated atmospheric carbon dioxide effects on sorghum and soybean nutrient status[J]. Journal of Plant Nutrition,1994,17(11):1939-1954.
[10]庄明浩,李迎春,郭子武,等. 大气CO2浓度升高对毛竹叶片膜脂过氧化和抗氧化系统的影响[J]. 生态学杂志,2012,31(5):1064-1069.
[11]刘筱. 模拟CO2浓度升高和降水改变对薄荷生理生态特性的影响[D]. 贵阳:贵州大学,2020.
[12]彭长连,林植芳,林桂珠. 加富CO2条件下水稻叶片抗氧化能力的变化[J]. 作物学报,1999,25(1):39-43.
[13]赵天宏,王美玉,张巍巍,等. 大气CO2浓度升高对植物光合作用的影响[J]. 生态环境,2006,15(5):1096-1100.
[14]Lloyd J,Farquhar G D. The CO2 dependence of photosynthesis,plant growth responses to elevated atmospheric CO2 concentrations and their interaction with soil nutrient status. Ⅰ. General principles and forest ecosystems[J]. Functional Ecology,1996,10(1):4.
[15]牛晓光,杨荣全,李明,等. 大气CO2浓度升高与氮肥互作对玉米光合特性及产量的影响[J]. 中国生态农业学报,2020,28(2):255-264.
[16]Conroy J P,Smillie R M,Küppers M,et al. Chlorophyll a fluorescence and photosynthetic and growth responses of Pinus radiata to phosphorus deficiency,drought stress,and high CO2[J]. Plant Physiology,1986,81(2):423-429.
[17]Lewis J D,Griffin K L,Thomas R B,et al. Phosphorus supply affects the photosynthetic capacity of loblolly pine grown in elevated carbon dioxide[J]. Tree Physiology,1994,14(11):1229-1244.
[18]李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社,2000.
[19]Giannopolitis C N,Ries S K.Superoxide dismutases:Ⅱ. purification and quantitative relationship with water-soluble protein in seedlings[J]. Plant physiology,1997,59(2):315-318.
[20]陈贻竹,B.帕特森. 低温对植物叶片中超氧物歧化酶、过氧化氢酶和过氧化氢水平的影响[J]. 植物生理学报,1988,14(4):323-328.
[21]Cakmak I,Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase,ascorbate peroxidase,and glutathione reductase in bean leaves[J]. Plant Physiology,1992,98(4):1222-1227.
[22]Heath R L,Packer L.Photoperoxidation in isolated chloroplasts:Ⅰ. Kinetics and stoichiometry of fatty acid peroxidation[J]. Archives of Biochemistry and Biophysics,1968,125(1):189-198.
[23]Kant S,Seneweera S,Rodin J,et al. Improving yield potential in crops under elevated CO2:integrating the photosynthetic and nitrogen utilization efficiencies[J]. Frontiers in Plant Science,2012,3:162.
[24]Morales A,Yin X Y,Harbinson J,et al. In silico analysis of the regulation of the photosynthetic electron transport chain in C3 plants[J]. Plant Physiology,2017,176(2):1247-1261.
[25]Conroy J P. Influence of elevated atmospheric CO2 concentrations on plant nutrition[J]. Australian Journal of Botany,1992,40(5):445.
[26]朱隆静,喻景权. 不同供磷水平对番茄生长和光合作用的影响[J]. 浙江农业学报,2005,17(3):120-122.
[27]Jacob J,Lawlor D W. Stomatal and mesophyll limitations of photosynthesis in phosphate deficient sunflower,maize and wheat plants[J]. Journal of Experimental Botany,1991,42(8):1003-1011.
[28]Mott K A. Sensing of atmospheric CO2 by plants[J]. Plant,Cell and Environment,1990,13(7):731-737.
[29]Centritto M,Lucas M E,Jarvis P G. Gas exchange,biomass,whole-plant water-use efficiency and water uptake of peach (Prunus persica) seedlings in response to elevated carbon dioxide concentration and water availability[J]. Tree Physiology,2002,22(10):699-706.
[30]Klaiber J,Najar-Rodriguez A J,Piskorski R,et al. Plant acclimation to elevated CO2 affects important plant functional traits,and concomitantly reduces plant colonization rates by an herbivorous insect[J]. Planta,2013,237(1):29-42.
[31]Brestic M,Zivcak M,Hauptvogel P,et al. Wheat plant selection for high yields entailed improvement of leaf anatomical and biochemical traits including tolerance to non-optimal temperature conditions[J]. Photosynthesis Research,2018,136(2):245-255.
[32]Oberbauer S F,Strain B R,Fetcher N. Effect of CO2-enrichnient on seedling physiology and growth of two tropical tree species[J]. Physiologia Plantarum,1985,65(4):352-356.
[33]Socias F X,Medrano H,Sharkey T D. Feedback limitation of photosynthesis of Phaseolus vulgaris L grown in elevated CO2[J]. Plant,Cell and Environment,1993,16(1):81-86.
[34]Nie G Y,Long S P,Garcia R L,et al. Effects of free-air CO2 enrichment on the development of the photosynthetic apparatus in wheat,as indicated by changes in leaf proteins[J]. Plant,Cell and Environment,1995,18(8):855-864.
[35]卢从明,张其德,冯丽洁,等. CO2浓度倍增对谷子拔节期和灌浆期光合色素含量和PSⅡ功能的影响[J]. 植物学报,1997,39(9):874-878.
[36]韦彩妙,林植芳,孔国辉. 提高CO2浓度对两种亚热带树苗光合作用的影响[J]. 植物学报,1996,38(2):123-130.
[37]高婷,张杰,马瑞红,等. NaCl胁迫对黑籽南瓜生长和生理特性的影响[J]. 江苏农业科学,2020,48(6):122-124,137.
[38]赵嫚,陈仕勇,李亚萍,等. 外源GABA对盐胁迫下金花菜种子萌发及幼苗抗氧化能力的影响[J]. 江苏农业学报,2021,37(2):310-316.
[39]高小丽,孙健敏,高金锋,等. 不同基因型绿豆叶片衰老与活性氧代谢研究[J]. 中国农业科学,2008,41(9):2873-2880.
[40]万美亮,邝炎华,陈建勋. 缺磷胁迫对甘蔗膜脂过氧化及保护酶系统活性的影响[J]. 华南农业大学学报,1999,20(2):1-6.
[41]潘晓华,刘水英,李锋,等. 低磷胁迫对不同水稻品种叶片膜脂过氧化及保护酶活性的影响[J]. 中国水稻科学,2003,17(1):57-60.
[42]Karim M F,Hao P F,Nordin N H B,et al. CO2 enrichment using CRAM fermentation improves growth,physiological traits and yield of cherry tomato (Solanum lycopersicum L.)[J]. Saudi Journal of Biological Sciences,2020,27(4):1041-1048.
[43]Zhang Y,Yao Q,Shi Y,et al. Elevated CO2 improves antioxidant capacity,ion homeostasis,and polyamine metabolism in tomato seedlings under Ca(NO3)2-induced salt stress[J]. Scientia Horticulturae,2020,273:109644.
[44]林久生,王根轩. CO2 倍增对渗透胁迫下小麦叶片抗氧化酶类及细胞程序性死亡的影响[J]. 植物生理学报,2000,26(5):453-457.

相似文献/References:

[1]何从亮,毛久庚,甘小虎,等.玻璃温室番茄长季节基质袋栽培技术[J].江苏农业科学,2013,41(04):158.
[2]李永灿,余文贵,陈怀谷,等.番茄灰霉病菌产毒条件优化[J].江苏农业科学,2013,41(05):94.
 Li Yongcan,et al.Optimization of toxigenic conditions of tomato Botrytis cinerea[J].Jiangsu Agricultural Sciences,2013,41(12):94.
[3]赵秋月,甘潇,张广臣.Na2CO3胁迫对番茄幼苗生长的影响[J].江苏农业科学,2013,41(05):128.
 Zhao Qiuyue,et al.Effect of Na2CO3 stress on growth of tomato seedlings[J].Jiangsu Agricultural Sciences,2013,41(12):128.
[4]耿德刚,徐俊伟,戈振超,等.温室大棚番茄滴灌试验研究及效益分析[J].江苏农业科学,2013,41(05):132.
 Geng Degang,et al.Drip irrigation experimental and benefit analysis on greenhouse tomato[J].Jiangsu Agricultural Sciences,2013,41(12):132.
[5]杜中平,聂书明.不同配方基质对番茄生长特性、光合特性及产量的影响[J].江苏农业科学,2013,41(05):138.
 Du Zhongping,et al.Effects of different substrates on growth,photosynthetic characteristics and yield of tomato[J].Jiangsu Agricultural Sciences,2013,41(12):138.
[6]赵河,毛秀杰,叶景学.抗叶霉病不同基因型番茄的光合特性[J].江苏农业科学,2014,42(11):185.
 Zhao He,et al(8).Photosynthetic characteristics of different genotypes of tomato with resistance to leaf mold[J].Jiangsu Agricultural Sciences,2014,42(12):185.
[7]陈素娟,孙娜娜.不同基质配比对番茄秧苗生长的影响[J].江苏农业科学,2013,41(06):128.
 Chen Sujuan,et al.Effect of different substrate compositions on growth of tomato seedling[J].Jiangsu Agricultural Sciences,2013,41(12):128.
[8]孙禛禛,吴秋霞,温新宇,等.转反义LetAPX基因番茄抗氧化酶活性在苗期、花期、果期的变化[J].江苏农业科学,2015,43(12):188.
 Sun Zhenzhen,et al.Study on antioxidant enzymes activity during seedling,flowering and fruiting of tomato with antisense LetAPX gene[J].Jiangsu Agricultural Sciences,2015,43(12):188.
[9]李晓慧,张恩让,何玉安,等.亚高温及外源物质调节下番茄的生理响应[J].江苏农业科学,2013,41(07):135.
 Li Xiaohui,et al.Physiological response of tomato under the regulation of sub-high temperature and exogenous substances[J].Jiangsu Agricultural Sciences,2013,41(12):135.
[10]李建宏,张楠,张泽,等.番茄红素提取与测定方法的优化[J].江苏农业科学,2013,41(08):259.
 Li Jianhong,et al.Optimization of lycopene extraction and determination method[J].Jiangsu Agricultural Sciences,2013,41(12):259.

备注/Memo

备注/Memo:
收稿日期:2021-08-29
基金项目:国家自然科学基金(编号:41602363)。
作者简介:王月(1977—),女,辽宁北镇人,博士,讲师,主要从事植物营养施肥与土壤肥力研究。E-mail:wangyue1028@163.com。
更新日期/Last Update: 2022-06-20