|本期目录/Table of Contents|

[1]李鸿波,符俊洪,冯磊.黏虫HSC70互作蛋白基因HIP的分子特征与时空表达分析[J].江苏农业科学,2022,50(13):98-103.
 Li Hongbo,et al.Molecular characterization and temporospatial expression of a HSC70-interacting protein gene (HIP) in oriental armyworm,Mythimna separata[J].Jiangsu Agricultural Sciences,2022,50(13):98-103.
点击复制

黏虫HSC70互作蛋白基因HIP的分子特征与时空表达分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第13期
页码:
98-103
栏目:
生物技术
出版日期:
2022-07-05

文章信息/Info

Title:
Molecular characterization and temporospatial expression of a HSC70-interacting protein gene (HIP) in oriental armyworm,Mythimna separata
作者:
李鸿波1 符俊洪2 冯磊2
1.贵州省农业科学院植物保护研究所,贵州贵阳 550006; 2.贵州大学昆虫研究所,贵州贵阳 550025
Author(s):
Li Hongboet al
关键词:
黏虫HIP生殖时空表达
Keywords:
-
分类号:
S433.4
DOI:
-
文献标志码:
A
摘要:
为分析HSC70 互作蛋白(HSC70 interacting protein,简称HIP)基因在黏虫生殖中的潜在作用,采 用RT-PCR 的方法从黏虫中克隆1个HIP同源基因的全长cDNA序列,并采用实时荧光定量PCR分析其在黏虫不同发育阶段(卵、1~6龄、蛹和4日龄雌虫)和4日龄雌虫不同组织[头(无触角)、胸、触角、翅、中肠、脂肪体和卵巢]中的表达特性。结果表明,克隆得到的HIP序列全长为1 215 bp,命名为MsHIPMsHIP编码405个氨基酸(aa),预测的分子量为44.04 ku。序列分析表明,MsHIP具有定义HIP的3个保守结构域,即N-端二聚体结构域,3个TPR结构域和 C- 端U-box结构域。系统发育分析显示黏虫HIP与棉铃虫H.armigera HIP亲缘关系最近。时空表达分析表明,MsHIP在所有发育阶段均表达,并在4日龄雌成虫中的表达量水平最高,其表达量是对照的45.28倍;MsHIP 4日龄雌虫各组织中均表达,其中在卵巢中的表达量最高,脂肪体次之,其表达量分别为对照的18.55倍和13.58倍,表明MsHIP在黏虫的生殖中发挥重要作用。
Abstract:
-

参考文献/References:

[1]江幸福,张蕾,程云霞,等. 我国黏虫研究现状及发展趋势[J]. 应用昆虫学报,2014,51(4):881-889.
[2]姜玉英,李春广,曾娟. 我国黏虫发生概况:60年回顾[J]. 应用昆虫学报,2014,51(4):890-898.
[3]张云慧,张智,姜玉英,等. 2012 年三代黏虫大发生原因初步分析[J]. 植物保护,2012,38(5):1-8.
[4]曾娟,姜玉英,刘杰. 2012年黏虫暴发特点分析与监测预警建议[J]. 植物保护,2013,39(2):117-12l.
[5]黄芊,蒋显斌,凌炎,等. 黏虫在4种寄主植物上的生长发育和繁殖的比较研究[J]. 中国植保导刊,2018,38(9):5-10.
[6]戈林泉,吴进才. 昆虫卵黄蛋白及其激素调控的研究进展[J]. 昆虫知识,2010,47(2):236-246.
[7]Xiao H J,Fu X W,Liu Y Q,et al. Synchronous vitellogenin expression and sexual maturation during migration are negatively correlated with juvenile hormone levels in Mythimna separata[J]. Scientific Reports,2016,6:33309.
[8]李杰. 黏虫VgR基因的克隆、表达及功能鉴定[D]. 临汾:山西师范大学,2018.
[9]Chen B,Wagner A. Hsp90 is important for fecundity,longevity,and buffering of cryptic deleterious variation in wild fly populations[J]. BMC Evolutionary Biology,2012,12:25.
[10]Zhang Y,Gu S S,Li C J,et al. Identification and characterization of novel ER-based hsp90 gene in the red flour beetle,Tribolium castaneum[J]. Cell Stress & Chaperones,2014,19(5):623-633.
[11]Luo M W,Li D,Wang Z M,et al. Juvenile hormone differentially regulates two Grp78 genes encoding protein chaperones required for insect fat body cell homeostasis and vitellogenesis[J]. Journal of Biological Chemistry,2017,292(21):8823-8834.
[12]Xie J,Hu X X,Zhai M F,et al. Characterization and functional analysis of hsp18.3 gene in the red flour beetle,Tribolium castaneum[J]. Insect Science,2019,26(2):263-273.
[13]Tian M M,Xia Y Y,Cai D C,et al. Proteomic investigation of Peristenus spretus ovary and characterization of an ovary-enriched heat shock protein[J]. Bulletin of Entomological Research,2021,111(3):270-281.
[14]Chen X,Li Z D,Li D T,et al. HSP70/DNAJ family of genes in the brown planthopper,Nilaparvata lugens:diversity and function[J]. Genes,2021,12(3):394.
[15]McDonough H,Patterson C. CHIP:a link between the chaperone and proteasome systems[J]. Cell Stress Chaperones,2003,8(4):303-308.
[16]Ballinger C A,Connell P,Wu Y,et al. Identification of CHIP,a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions[J]. Molecular and Cellular Biology,1999,19(6):4535-4545.
[17]Webb M A,Cavaletto J M,Klanrit P,et al. Orthologs in Arabidopsis thaliana of the Hsp70 interacting protein hip[J]. Cell Stress & Chaperones,2001,6(3):247-255.
[18]Hogan C C,Bettencourt B R. Duplicate gene evolution toward multiple fates at the Drosophila melanogaster HIP/HIP-replacement locus[J]. Journal of Molecular Evolution,2009,68(4):337-350.
[19]Zhang Y,Lai X D,Yang S Q,et al. Functional analysis of tomato CHIP ubiquitin E3 ligase in heat tolerance[J]. Scientific Reports,2021,11(1):1713.
[20]Zhou J,Zhang Y,Qi J X,et al. E3 ubiquitin ligase CHIP and NBR1-mediated selective autophagy protect additively against proteotoxicity in plant stress responses[J]. PLoS Genetics,2014,10(1):e1004116.
[21]Copeland C,Ao K,Huang Y,et al. The evolutionarily conserved E3 ubiquitin ligase AtCHIP contributes to plant immunity[J]. Frontiers in Plant Science,2016,7:309.
[22]Zhang Y,Xia G S,Zhu Q G. Conserved and unique roles of chaperone-dependent E3 ubiquitin ligase CHIP in plants[J]. Frontiers in Plant Science,2021,12:699756.
[23]李鸿波,戴长庚,张昌容,等. 黏虫 hsc70 克隆及其密度胁迫下的表达模式[J]. 应用昆虫学报,2018,55(5):825-833.
[24]Li H B,Dai C G,Zhang C R,et al. Screening potential reference genes for quantitative real-time PCR analysis in the oriental armyworm,Mythimna separata[J]. PLoS One,2018,13(4):e0195096.
[25]Pfaffl M W. A new mathematical model for relative quantification in real-time RT-PCR[J]. Nucleic Acids Research,2001,29(9):e45.
[26]Zhang M H,Windheim M,Roe S M,et al. Chaperoned ubiquitylation-crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex[J]. Molecular Cell,2005,20(4):525-538.
[27]Zhang H Q,Amick J,Chakravarti R,et al. A bipartite interaction between Hsp70 and CHIP regulates ubiquitination of chaperoned client proteins[J]. Structure,2015,23(3):472-482.
[28]Jiang J H,Ballinger C A,Wu Y X,et al. Chip is a u-box-dependent e3 ubiquitin ligase:identification of hsc70 as a target for ubiquitylation[J]. Journal of Biological Chemistry,2001,276(46):42938-42944.
[29]Chang Y W,Zhang X X,Chen J Y,et al. Characterization of three heat shock protein 70 genes from Liriomyza trifolii and expression during thermal stress and insect development[J]. Bulletin of Entomological Research,2019,109(2):150-159.
[30]杨静,Nasir A B,樊东. 黏虫热休克蛋白HSP90基因的克隆及不同温度对其诱导反应[J]. 中国生物防治学报,2017,33(5):623-630.
[31]魏纪珍,王凯,刘少凯,等. 小分子热激蛋白基因HaHSP19.8在棉铃虫抗逆反应中的作用[J]. 昆虫学报,2020,63(8):913-923.
[32]孙猛,陆明星,汤小天,等. 大螟HSC70基因克隆及表达模式分析[J]. 昆虫学报,2014,57(7):787-797.
[33]周吕,孟建玉,杨昌利,等. 草地贪夜蛾热激蛋白基因SfHsp90的克隆及在高低温和UV-A胁迫下的表达分析[J]. 昆虫学报,2020,63(5):533-544.
[34]Tufail M,Takeda M. Molecular characteristics of insect vitellogenins[J]. Journal of Insect Physiology,2008,54(12):1447-1458.

相似文献/References:

[1]易春燕,刘旭,王燕平,等.草地贪夜蛾与黏虫肠道微生物的多样性分析[J].江苏农业科学,2024,52(5):140.
 Yi Chunyan,et al.Analysis of gut microbiota diversity of Spodoptera frugiperda and Mythimna separate[J].Jiangsu Agricultural Sciences,2024,52(13):140.

备注/Memo

备注/Memo:
收稿日期:2021-10-19
基金项目:贵州省自然科学基金(编号:黔科合基础[2020]IZ022)。
作者简介:李鸿波(1985—),男,贵州绥阳人,博士,副研究员,主要从事玉米害虫综合治理研究。E-mail:gzlhb2017@126.com。
更新日期/Last Update: 2022-07-05