|本期目录/Table of Contents|

[1]王葆生,庞杰,廉勇,等.芫荽NPR1-like家族全基因组鉴定及分析[J].江苏农业科学,2022,50(13):103-111.
 Wang Baosheng,et al.Genome-wide identification and analysis of NPR1-like family in coriander[J].Jiangsu Agricultural Sciences,2022,50(13):103-111.
点击复制

芫荽NPR1-like家族全基因组鉴定及分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第13期
页码:
103-111
栏目:
生物技术
出版日期:
2022-07-05

文章信息/Info

Title:
Genome-wide identification and analysis of NPR1-like family in coriander
作者:
王葆生 庞杰 廉勇 刘晓蕊 扈顺 刘湘萍
内蒙古自治区农牧业科学院蔬菜花卉研究所,内蒙古呼和浩特 010031
Author(s):
Wang Baoshenget al
关键词:
芫荽NPR1-like基因家族生物信息学
Keywords:
-
分类号:
S636.901
DOI:
-
文献标志码:
A
摘要:
为研究芫荽NPR1-like基因家族的进化和功能,利用生物信息学手段,从芫荽全基因组中鉴定出7个NPR1-like基因,将其命名为CsNPR1~7,并对其理化性质、系统发生关系、保守结构域、基因结构、启动子区顺式作用元件和表达模式进行预测和分析。结果表明,芫荽7个NPR1-like基因家族成员在进化上分为Clade Ⅰ、Clade Ⅱ和Clade Ⅲ共3个分支,序列中有典型的BTB/POZ和锚蛋白重复结构域,含有1~3个内含子。芫荽NPRs不仅在蛋白序列中涉及构象变化、核定位及水杨酸(SA)结合等核心功能位点与拟南芥高度保守,而且在基因结构上也与拟南芥NPRs相似,暗示着二者可能具有类似的功能。CsNPRs基因启动子区域含有与激素响应、逆境胁迫和植物生长发育相关的顺式作用元件。基因表达分析结果显示,CsNPRs的表达部位和时期各不相同,暗示着芫荽NPR1-like基因家族成员可能在调控芫荽不同组织和不同时期生长发育过程中发挥不同作用。
Abstract:
-

参考文献/References:

[1]Cao H,Bowling S A,Gordon A S,et al. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance[J]. The Plant Cell,1994,6(11):1583-1592.
[2]Liu G S,Holub E B,Alonso J M,et al. An Arabidopsis NPR1-like gene,NPR4,is required for disease resistance[J]. The Plant Journal,2005,41(2):304-318.
[3]Norberg M,Holmlund M,Nilsson O. The BLADE ON PETIOLE genes act redundantly to control the growth and development of lateral organs[J]. Development,2005,132(9):2203-2213.
[4]Hepworth S R,Zhang Y L,McKim S,et al. BLADE-ON-PETIOLE-dependent signaling controls leaf and floral patterning in Arabidopsis[J]. The Plant Cell,2005,17(5):1434-1448.
[5]Ding Y L,Sun T J,Ao K,et al. Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity[J]. Cell,2018,173(6):1454-1467.e15.
[6]Olate E,Jiménez-Gómez J M,Holuigue L,et al. NPR1 mediates a novel regulatory pathway in cold acclimation by interacting with HSFA1 factors[J]. Nature Plants,2018,4(10):811-823.
[7]Zhang Y L,Cheng Y T,Qu N,et al. Negative regulation of defense responses in Arabidopsis by two NPR1 paralogs[J]. The Plant Journal,2006,48(5):647-656.
[8]Backer R,Mahomed W,Reeksting B J,et al. Phylogenetic and expression analysis of the NPR1-like gene family from Persea americana (Mill.)[J]. Frontiers in Plant Science,2015,6:300.
[9]Wang Z,Ma L Y,Li X,et al. Genome-wide identification of the NPR1-like gene family in Brassica napus and functional characterization of BnaNPR1 in resistance to Sclerotinia sclerotiorum[J]. Plant Cell Reports,2020,39(6):709-722.
[10]Agarwal N,Srivastava R,Verma A,et al. Unravelling cotton nonexpressor of pathogenesis-related 1(NPR1)-like genes family:evolutionary analysis and putative role in fiber development and defense pathway[J]. Plants,2020,9(8):999.
[11]Liu X,Liu Z G,Niu X H,et al. Genome-wide identification and analysis of the NPR1-like gene family in bread wheat and its relatives[J]. International Journal of Molecular Sciences,2019,20(23):5974.
[12]Prachayasittikul V,Prachayasittikul S,Ruchirawat S,et al. Coriander (Coriandrum sativum):a promising functional food toward the well-being[J]. Food Research International,2018,105:305-323.
[13]Abbassi A,Mahmoudi H,Zaouali W,et al. Enzyme-aided release of bioactive compounds from coriander (Coriandrum sativum L.) seeds and their residue by-products and evaluation of their antioxidant activity[J]. Journal of Food Science and Technology,2018,55(8):3065-3076.
[14]Verma A,Parihar R,Baishya B. Identification of metabolites in coriander seeds (Coriandrum Sativum L.) aided by ultrahigh resolution total correlation NMR spectroscopy[J]. Magnetic Resonance in Chemistry,2019,57(6):304-316.
[15]Kandlakunta B,Rajendran A,Thingnganing L. Carotene content of some common (cereals,pulses,vegetables,spices and condiments) and unconventional sources of plant origin[J]. Food Chemistry,2008,106(1):85-89.
[16]李小梅,张景涛. 芫荽遗传多样性与性状的关联分析[J]. 湖北农业科学,2019,58(21):107-112.
[17]Song X M,Wang J P,Li N,et al. Deciphering the high-quality genome sequence of coriander that causes controversial feelings[J]. Plant Biotechnology Journal,2020,18(6):1444-1456.
[18]Chen C J,Chen H,Zhang Y,et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant,2020,13(8):1194-1202.
[19]Larkin M A,Blackshields G,Brown N P,et al. Clustal W and clustal X version 2.0[J]. Bioinformatics,2007,23(21):2947-2948.
[20]Lescot M,Déhais P,Thijs G,et al. PlantCARE,a database of plant Cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research,2002,30(1):325-327.
[21]Kumar S,Stecher G,Tamura K. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution,2016,33(7):1870-1874.
[22]Song X M,Nie F L,Chen W,et al. Coriander genomics database:a genomic,transcriptomic,and metabolic database for coriander[J]. Horticulture Research,2020,7(1):55.
[23]Cao H,Glazebrook J,Clarke J D,et al. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats[J]. Cell,1997,88(1):57-63.
[24]Ryals J,Weymann K,Lawton K,et al. The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor I κ B[J]. The Plant Cell,1997,9(3):425-439.
[25]Mou Z L,Fan W H,Dong X N. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes[J]. Cell,2003,113(7):935-944.
[26]Tada Y,Spoel S H,Pajerowska-Mukhtar K,et al. Plant immunity requires conformational changes[corrected]of NPR1 via S-nitrosylation and thioredoxins[J]. Science,2008,321(5891):952-956.
[27]Chen J,Zhang J Y,Kong M M,et al. More stories to tell:NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1,a salicylic acid receptor[J]. Plant,Cell & Environment,2021,44(6):1716-1727.
[28]Fu Z Q,Yan S P,Saleh A,et al. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants[J]. Nature,2012,486(7402):228-232.
[29]Ren R,Wei Y L,Ahmad S,et al. Identification and characterization of NPR1 and PR1 homologs in Cymbidium orchids in response to multiple hormones,salinity and viral stresses[J]. International Journal of Molecular Sciences,2020,21(6):1977.
[30]Lin W C,Lu C F,Wu J W,et al. Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases[J]. Transgenic Research,2004,13(6):567-581.
[31]Zhang X D,Francis M I,Dawson W O,et al. Over-expression of the Arabidopsis NPR1 gene in Citrus increases resistance to Citrus canker[J]. European Journal of Plant Pathology,2010,128(1):91-100.
[32]Wally O,Jayaraj J,Punja Z K. Broad-spectrum disease resistance to necrotrophic and biotrophic pathogens in transgenic carrots (Daucus carota L.) expressing an Arabidopsis NPR1 gene[J]. Planta,2009,231(1):131-141.
[33]Kinkema M,Fan W H,Dong X N. Nuclear localization of NPR1 is required for activation of PR gene expression[J]. The Plant Cell,2000,12(12):2339-2350.
[34]Bias R,Szafran K,Hnatuszko-Konka K,et al. Cis-regulatory elements used to control gene expression in plants[J]. Plant Cell,Tissue and Organ Culture,2016,127(2):269-287.
[35]Srivastava R,Rai K M,Srivastava R. Plant biosynthetic engineering through transcription regulation:an insight into molecular mechanisms during environmental stress[M]//Varjani S,Parameswaran B,Kumar S,et al. Biosynthetic technology and environmental challenges. energy,environment,and sustainability. Singapore:Springer,2018:1-72.
[36]Rushton P J,Somssich I E. Transcriptional control of plant genes responsive to pathogens[J]. Current Opinion in Plant Biology,1998,1(4):311-315.
[37]Yu D,Chen C,Chen Z. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression[J]. The Plant Cell,2001,13(7):1527-1540.
[38]Chen J,Mohan R,Zhang Y Q,et al. NPR1 promotes its own and target gene expression in plant defense by recruiting CDK8[J]. Plant Physiology,2019,181(1):289-304.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2021-06-23
基金项目:国家现代农业产业技术体系建设专项(编号:GARS-23-G20);内蒙古自治区科技重大专项(编号:2021ZD0001);内蒙古自治区科技计划(编号:2019GG341)。
作者简介:王葆生(1983—),男,内蒙古包头人,博士,副研究员,主要从事蔬菜育种和分子生物学研究。E-mail:cauwbs@126.com。
通信作者:刘湘萍,硕士,研究员,主要从事蔬菜栽培育种研究。E-mail:lxp_bt@163.com。
更新日期/Last Update: 2022-07-05