|本期目录/Table of Contents|

[1]窦勇,胡佩红,田林双,等.多聚赖氨酸对梨果采后青霉病防治及其抗性诱导机制[J].江苏农业科学,2022,50(14):177-182.
 Dou Yong,et al.Control and resistance induction mechanism of polylysine to postharvest penicillium in pear fruit[J].Jiangsu Agricultural Sciences,2022,50(14):177-182.
点击复制

多聚赖氨酸对梨果采后青霉病防治及其抗性诱导机制(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第14期
页码:
177-182
栏目:
贮藏加工与检测分析
出版日期:
2022-07-20

文章信息/Info

Title:
Control and resistance induction mechanism of polylysine to postharvest penicillium in pear fruit
作者:
窦勇1胡佩红2田林双1吴存兵1
1.江苏财经职业技术学院粮食与食品药品学院,江苏淮安 223003; 2.淮安正昌饲料有限公司技术部,江苏淮安 223008
Author(s):
Dou Yonget al
关键词:
多聚赖氨酸梨果青霉病抗性诱导控制效果
Keywords:
-
分类号:
S661.209+.3;TS255.3
DOI:
-
文献标志码:
A
摘要:
为研究多聚赖氨酸对梨果采后青霉病的防治效果,以期为其在梨果采后病害防控及贮藏保鲜中得到应用。采用打孔处理方法,将不同浓度的多聚赖氨酸注入梨果果肉组织,诱导处理24 h后,接种1×105 个/mL青霉孢子悬液,以无菌生理盐水为对照。储藏后,每隔24 h通过测定伤口腐烂率和腐烂直径考察多聚赖氨酸对青霉病的控制效果;采用控制梨果青霉病最佳浓度的多聚赖氨酸对梨果整果进行浸泡处理,考察其对梨果抗病效果和贮藏品质的影响,并研究梨果抗性酶活性变化情况。结果表明,打孔处理时,600 mg/L多聚赖氨酸能最有效地控制梨果采后青霉病,该浓度整果浸泡处理梨果3 min后,也能有效控制梨果青霉病,且储藏品质比对照组更好,且梨果抗性酶多酚氧化酶(PPO)、过氧化物酶(POD)和苯丙氨酸解氨酶(PAL)活性比对照组显著升高。多聚赖氨酸可以有效控制梨果采后青霉病,提高梨果的储藏品质,延长采后梨果的货架期,具有较高的市场应用价值。
Abstract:
-

参考文献/References:

[1]张奇儒. 异常威克汉姆酵母控制梨果采后病害及其诱导梨果抗性相关机制研究[D]. 镇江:江苏大学,2019.
[2]Li J,Zhang Q,Cui Y,et al. Use of UV-C treatment to inhibit the microbial growth and maintain the quality of yali pear[J]. Journal of Food Science,2010,75(7):M503-M507.
[3]李自芹. SA、紫外线和苯甲酸钠对库尔勒香梨采后黑头病的抗病性及贮藏品质的影响研究[D]. 石河子:石河子大学,2013.
[4]Zhao L N,Wang Y J,Wang Y,et al. Effect of β-glucan on the biocontrol efficacy of Cryptococcus podzolicus against postharvest decay of pears and the possible mechanisms involved[J]. Postharvest Biology and Technology,2020,160:111057.
[5]Dou Y,Routledge M N,Gong Y Y,et al. Efficacy of epsilon-poly-L-lysine inhibition of postharvest blue mold in apples and potential mechanisms[J]. Postharvest Biology and Technology,2021,171:111346.
[6]Xu M Q,Yang Q Y,Serwah Boateng N A,et al. Ultrastructure observation and transcriptome analysis of Penicillium expansum invasion in postharvest pears[J]. Postharvest Biology and Technology,2020,165:111198.
[7]Ge Y H,Wei M L,Li C Y,et al. Reactive oxygen species metabolism and phenylpropanoid pathway involved in disease resistance against Penicillium expansum in apple fruit induced by ε-poly-l-lysine[J]. Journal of the Science of Food and Agriculture,2018,98(13):5082-5088.
[8]Zhu H M,Zhao L N,Zhang X Y,et al. Efficacy of Yarrowia lipolytica in the biocontrol of green mold and blue mold in Citrus reticulata and the mechanisms involved[J]. Biological Control,2019,139:104096.
[9]Abdelhai M H,Zhang Q R,Zhao L N,et al. Effects of baobab (Adansonia digitata L.) in combination with Sporidiobolus pararoseus Y16 on the activities of the defense-related enzymes and the expression levels of defense-related genes of apples[J]. Biological Control,2019,139:104094.
[10]Godana E A,Yang Q Y,Wang K L,et al. Bio-control activity of Pichia anomala supplemented with chitosan against Penicillium expansum in postharvest grapes and its possible inhibition mechanism[J]. LWT,2020,124:109188.
[11]Zhang X Y,Wu F,Gu N,et al. Postharvest biological control of Rhizopus rot and the mechanisms involved in induced disease resistance of peaches by Pichia membranefaciens[J]. Postharvest Biology and Technology,2020,163:111146.
[12]韩雅姗. 食品化学实验指导[M]. 北京:中国农业大学出版社,1992.
[13]李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社,2000.
[14]Gunness P,Kravchuk O,Nottingham S M,et al. Sensory analysis of individual strawberry fruit and comparison with instrumental analysis[J]. Postharvest Biology and Technology,2009,52(2):164-172.
[15]牛佳佳,张四普,郭超峰,等. 采前硼处理对酥梨品质和贮藏性的影响[J]. 河南农业科学,2019,48(12):146-151.
[16]蔡孟轩,周雅涵,张鸿雁,等. 橄榄假丝酵母控制苹果果实青霉病的效果及机制[J]. 食品科学,2018,39(5):265-271.
[17]Wang M Y,Zhao L N,Zhang X Y,et al. Study on biocontrol of postharvest decay of table grapes caused by Penicillium rubens and the possible resistance mechanisms by Yarrowia lipolytica[J]. Biological Control,2019,130:110-117.
[18]Wang Y,Li Y L,Xu W D,et al. Exploring the effect of β-glucan on the biocontrol activity of Cryptococcus podzolicus against postharvest decay of apples and the possible mechanisms involved[J]. Biological Control,2018,121:14-22.
[19]Apaliya M T,Zhang H Y,Yang Q Y,et al. Hanseniaspora uvarum enhanced with trehalose induced defense-related enzyme activities and relative genes expression levels against Aspergillus tubingensis in table grapes[J]. Postharvest Biology and Technology,2017,132:162-170.
[20]Nishikawa M,Kobayashi K. Streptomyces rose produces two different poly(amino acid)s:lariat-shaped γ-poly(l-glutamic acid) and ε-poly(l-lysine)[J]. Microbiology,2009,155(9):2988-2993.
[21]Rajapaksha D S W,Kodithuwakku K H T,Silva K S T,et al. Evaluation of potassium sorbate and poly-lysine for their inhibitory activity on post acidification of set yoghurt under cold storage for 20 days[J]. International Journal of Scientific and Research Publications,2013,3(6):2250-3153.
[22]唐永萍,石亚莉,贺军花,等. 苹果采后灰霉病抗性生理差异分析[J]. 食品科学,2017,38(19):248-254.

相似文献/References:

[1]束兆林,杨红福,陈红州,等.胶红酵母(Rhodotorula mucilaginosa)对梨果采后青霉病、灰霉病的控制效果[J].江苏农业科学,2015,43(08):110.
 Shu Zhaolin,et al.Control effect of Rhodotorula mucilaginosa on Penicillium italicum and Botrytis cinerea in postharvest pear fruits[J].Jiangsu Agricultural Sciences,2015,43(14):110.
[2]霍爱玲,陈金慧,甄艳,等.有机纳米材料在植物核酸递送中的研究进展[J].江苏农业科学,2017,45(22):1.
 Huo Ailing,et al.Research progress of organic nanomaterials in plant nucleic acid delivery[J].Jiangsu Agricultural Sciences,2017,45(14):1.

备注/Memo

备注/Memo:
收稿日期:2021-08-30
基金项目:江苏省政策性引导项目——苏北科技专项富民强县项目(编号:SZ-HA2019011);江苏省“333人才工程”第五期人才资助项目;2021年江苏省青蓝工程教学团队——粮食工程技术教学团队项目。
作者简介:窦勇(1979—),男,安徽巢湖人,硕士,副教授,主要从事农产品贮藏与保鲜研究工作。E-mail:douyong1979@163.com。
更新日期/Last Update: 2022-07-20