|本期目录/Table of Contents|

[1]郭鹏,曹晟.中间偃麦草全基因组的选择[J].江苏农业科学,2022,50(18):54-59.
 Guo Peng,et al.Genomic selection for intermediate wheatgrass[J].Jiangsu Agricultural Sciences,2022,50(18):54-59.
点击复制

中间偃麦草全基因组的选择(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第18期
页码:
54-59
栏目:
基因组学与功能基因
出版日期:
2022-09-20

文章信息/Info

Title:
Genomic selection for intermediate wheatgrass
作者:
郭鹏曹晟
天津农学院计算机与信息工程学院,天津 300384
Author(s):
Guo Penget al
关键词:
基因组选择贝叶斯方法交叉验证中间偃麦草选种选育
Keywords:
-
分类号:
S543+.903
DOI:
-
文献标志码:
A
摘要:
为了有效实现中间偃麦草全基因组的选择,选用GBLUP,贝叶斯方法中的BayesA、BayesB、BayesCπ,使用5倍交叉验证的方式进行中间偃麦草7种不同性状全基因组的选择研究。结果显示,用4种方法估计7种性状育种值的最优准确度分别是0.673±0.056(自由脱粒率,BayesB)、0.654±0.154(穗产量,BayesB)、0.561±0.064(株高,BayesB)、0.434±0.104(落粒性,BayesB)、0.572±0.081(种子质量,BayesCπ)、0.231±0.067(每个花序小穗数,BayesCπ)、0.437±0.064(穗长,BayesA)。贝叶斯方法的估计准确度普遍高于GLUP法的估计准确度,说明贝叶斯全基因组选择方法在中间偃麦草全基因组选择的准确度方面有较明显的优势,BayesB准确度的优势最明显。此外,介绍了试验中不同性状全基因组估计的育种值,以便有助于中间偃麦草的选育工作。
Abstract:
-

参考文献/References:

[1]Dehaan L R,Ismail B P. Perennial cereals provide ecosystem benefits[J]. Cereal Foods World,2017,62(6):278-281.
[2]王洪刚,刘树兵,亓增军,等. 中间偃麦草在小麦遗传改良中的应用研究[J]. 山东农业大学学报(自然科学版),2000,31(3):333-336,344.
[3]李振声. 小麦远缘杂交新品种——小偃6号[J]. 山西农业科学,1986(5):30.
[4]蒋勃,张淑欣,王惠,等. 中间偃麦草种质改良及基因组学育种研究进展[J]. 植物遗传资源学报,2020,21(6):1385-1394.
[5]Meuwissen T H E,Hayes B J,Goddard M E. Prediction of total genetic value using genome-wide dense marker maps[J]. Genetics,2001,157(4):1819-1829.
[6]刘策,孟焕文,程智慧. 植物全基因组选择育种技术原理与研究进展[J]. 分子植物育种,2020,18(16):5335-5342.
[7]Zhang X F,Sallam A,Gao L L,et al. Establishment and optimization of genomic selection to accelerate the domestication and improvement of intermediate wheatgrass[J]. The Plant Genome,2016,9(1):1-18.
[8]Bajgain P,Zhang X F,Anderson J A. Genome-wide association study of yield component traits in intermediate wheatgrass and implications in genomic selection and breeding[J]. Genes,Genomes,Genetics,2019,9(8):2429-2439.
[9]Bajgain P,Zhang X F,Anderson J A. Dominance and G×E interaction effects improve genomic prediction and genetic gain in intermediate wheatgrass (Thinopyrum intermedium)[J]. The Plant Genome,2020,13(1):e20012.
[10]Crain J,Haghighattalab A,Dehaan L,et al. Development of whole-genome prediction models to increase the rate of genetic gain in intermediate wheatgrass (Thinopyrum intermedium) breeding[J]. The Plant Genome,2021,14(2):e20089.
[11]Habier D,Fernando R L,Kizilkaya K,et al. Extension of the bayesian alphabet for genomic selection[J]. BMC Bioinformatics,2011,12(1):186.
[12]van Raden P M. Efficient methods to compute genomic predictions[J]. Journal of Dairy Science,2008,91(11):4414-4423.
[13]Luan T,Woolliams J A,Lien S,et al. The accuracy of genomic selection in Norwegian red cattle assessed by cross-validation[J]. Genetics,2009,183(3):1119-1126.
[14]Rolf M M,Garrick D J,Fountain T,et al. Comparison of Bayesian models to estimate direct genomic values in multi-breed commercial beef cattle[J]. Genetics Selection Evolution,2015,47(1):1-14.

相似文献/References:

[1]周广飞,高夕全.玉米禾谷镰孢菌穗腐病抗性基因组选择研究[J].江苏农业科学,2023,51(14):65.
 Zhou Guangfei,et al.Genomic selection for resistance to maize gibberella ear rot[J].Jiangsu Agricultural Sciences,2023,51(18):65.

备注/Memo

备注/Memo:
收稿日期:2021-09-26
基金项目:天津市自然科学基金(编号:19JCYBJC24800)。
作者简介:郭鹏(1974—),男,山东枣庄人,博士,副教授,从事农业领域基因组选择技术方面的研究。E-mail:super_guopeng@163.com。
更新日期/Last Update: 2022-09-20