|本期目录/Table of Contents|

[1]陈纪鹏,刘小林,胡月清.芸薹属多倍体杂种减数分裂中染色体行为研究进展[J].江苏农业科学,2022,50(18):201-207.
 Chen Jipeng,et al.Research progress of chromosome behavior in meiosis of Brassica polyploid[J].Jiangsu Agricultural Sciences,2022,50(18):201-207.
点击复制

芸薹属多倍体杂种减数分裂中染色体行为研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第18期
页码:
201-207
栏目:
现代遗传育种
出版日期:
2022-09-20

文章信息/Info

Title:
Research progress of chromosome behavior in meiosis of Brassica polyploid
作者:
陈纪鹏刘小林胡月清
宜春学院生命科学与资源环境学院/江西省作物生长发育调控重点实验室,江西宜春 336000
Author(s):
Chen Jipenget al
关键词:
芸薹属多倍体减数分裂联会重组
Keywords:
-
分类号:
S565. 4
DOI:
-
文献标志码:
A
摘要:
进化史上的多倍化历程使芸薹属植物形成了复杂的基因组结构,芸薹属“禹氏三角”清晰地总结出3个二倍体两两结合形成3个四倍体的演化关系。丰富的遗传背景造就了种类繁多、形态多样的蔬菜、油料等芸薹属作物。模仿自然进化进程,人工合成多倍体也成为芸薹属植物遗传改良的理想途径。为解决合成多倍体育性差的难题,对配子形成的关键步骤——减数分裂的研究成为多倍体育种焦点。众多研究表明,合成芸薹属多倍体减数分裂过程有其特有的染色体行为特征。荧光原位杂交技术从细胞学层面清楚地揭示,合成多倍体中即使存在同源染色体,也可能发生非同源配对,单倍体中基因组内或基因组间染色体部分同源关系常引起染色体非同源配对。荧光免疫共沉淀技术研究结果显示,植物多倍体联会复合体形成过程中多种蛋白的作用。在同源染色体联会过程中,配对的DNA双链发生非随机断裂和愈合形成交叉。在大多数多倍体中,交叉的数量总是比双链断裂的数量少得多,从而可推断断裂修复并不是随机发生的。交叉的结果可能使DNA片段发生互换而产生重组,同源重组确保了同源染色体之间二价体的形成和随后的均等分离,这确保学有性系列过程正常进行和后代遗传多样性。芸薹属多倍体同源重组频率受植物遗传组成影响而表现出不同的频率。清晰地呈现出合成芸薹属多倍体减数分裂染色体行为规律及其遗传机制,这对成功合成芸薹属多倍体、创造有经济价值的作物新品种有重要意义。
Abstract:
-

参考文献/References:

[1]Fawcett J A,Maere S,van de Peer Y. Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event[J]. PNAS,2009,106(14):5737-5742.
[2]Cheng F,Wu J,Wang X W. Genome triplication drove the diversification of Brassica plants[J]. Horticulture Research,2014,1(10.1038):hortres.2014.24.
[3]Nagaharu U. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization[J]. Jpn J Bot,1935,7:389-452.
[4]Kong L J,Zhao K,Gao Y Y,et al. Comparative analysis of cytokinin response factors in Brassica diploids and amphidiploids and insights into the evolution of Brassica species[J]. BMC Genomics,2018,19(1):728.
[5]Schiessl S V,Mason A S. Ancient and recent polyploid evolution in Brassica[M]//Wani S,Thakur A,Jeshima Khan Y. Brassica improvement. Cham:Springer,2020:49-66.
[6]Ali H B M,Lysak M A,Schubert I. Chromosomal localization of rDNA in the Brassicaceae[J]. Genome,2005,48(2):341-346.
[7]Yu J Y,Hu F,Dossa K,et al. Genome-wide analysis of UDP-glycosyltransferase super family in Brassica rapa and Brassica oleracea reveals its evolutionary history and functional characterization[J]. BMC Genomics,2017,18(1):474.
[8]Wu D,Liu A Q,Qu X Y,et al. Genome-wide identification,and phylogenetic and expression profiling analyses,of XTH gene families in Brassica rapa L. and Brassica oleracea L[J]. BMC Genomics,2020,21(1):782.
[9]Yu H J,Jeong Y M,Mun J H. Comparative analysis of the radish genome with Brassica genomes[M]//Nishio T,Kitashiba H. The radish genome. Cham:Springer,2017:53-69.
[10]Cheng F,Wu J,Fang L,et al. Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa[J]. PLoS One,2012,7(5):e36442.
[11]Woodhouse M R,Cheng F,Pires J C,et al. Origin,inheritance,and gene regulatory consequences of genome dominance in polyploids[J]. PNAS,2014,111(14):5283-5288.
[12]Wang X. A physical map of the Brassica oleracea genome[M]//Liu S,Snowdon R,Kole C. The Brassica oleracea genome. Compendium of plant genomes. Cham:Springer,2021:22-34.
[13]Bus A,Hecht J,Huettel B,et al. High-throughput polymorphism detection and genotyping in Brassica napus using next-generation RAD sequencing[J]. BMC Genomics,2019,20:281-291.
[14]Waminal N E,Perumal S L,Kim H H,et al. Composition and organization of major repeat components in the Brassica oleracea Genome[M]//Liu S,Snowdon R,Kole C. The Brassica oleracea genome. Compendium of plant genomes. Cham:Springer,2021:51-66.
[15]Yang J H,Song N,Zhao X,et al. Genome survey sequencing provides clues into glucosinolate biosynthesis and flowering pathway evolution in allotetrapolyploid Brassica juncea[J]. BMC Genomics,2014,15(1):107-116.
[16]Thakur A K,Singh K H,Singh L,et al. SSR marker variations in Brassica species provide insight into the origin and evolution of Brassica amphidiploids[J]. Hereditas,2017,155:6.
[17]Chalhoub B,Denoeud F,Liu S Y,et al. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome[J]. Science,2014,345(6199):950-953.
[18]Waminal N E,Perumal S,Liu S,et al. Quantity,distribution and evolution of major repeats in Brassica napus[M]//Liu S,Snowdon R,Chalhoub B. The Brassica napus genome. Cham:Springer,2018:111-129.
[19]Song X M,Wei Y P,Xiao D,et al. Brassica carinata genome characterization clarifies Us triangle model of evolution and polyploidy in Brassica[J]. Plant Physiology,2021,186(1):388-406.
[20]Mercier R,Mézard C,Jenczewski E,et al. The molecular biology of meiosis in plants[J]. Annual Review of Plant Biology,2015,66:297-327.
[21]唐彩艳. 甘蓝型油菜减数分裂遗传调控的初步研究[D]. 武汉:华中农业大学,2015.
[22]Bozza C G,Pawlowski W P. The cytogenetics of homologous chromosome pairing in meiosis in plants[J]. Cytogenetic and Genome Research,2008,120(3/4):313-319.
[23]Li P R,Zhang S J,Li F,et al. A phylogenetic analysis of chloroplast genomes elucidates the relationships of the six economically important Brassica species comprising the triangle of U[J]. Frontiers in Plant Science,2017,8:111.
[24]Huteau V,Coriton O. Multicolored fluorescent in situ hybridization to assess pairing configurations at metaphase Ⅰ in Brassica hybrids[M]//Pradillo M,Heckmann S. Plant meiosis. Methods in molecular biology. New York:Humana,2020:169-180.
[25]Shamim Z,Armstrong S J. Using genome in Situ hybridization (GISH) to distinguish the constituent genomes of Brassica nigra and B. rapa in the hybrid B. juncea[M]//Pradillo M,Heckmann S. Plant meiosis:methods in molecular biology. New York:Humana,2020:67-78.
[26]Fredua-Agyeman R,Coriton O,Huteau V,et al. Molecular cytogenetic identification of B genome chromosomes linked to blackleg disease resistance in Brassica napus×B.Carinata interspecific hybrids[J]. TAG,2014,127(6):1305-1318.
[27]陈纪鹏,刘小林,胡月清.甘蓝型油菜与黑芥种间杂种基因组亲缘关系研究[J]. 江苏农业科学,2015,43(6):87-90.
[28]Howell E C,Armstrong S J. Using sequential fluorescence and genomic in situ hybridization (FISH and GISH) to distinguish the A and C genomes in Brassica napus Wojciech[M]//Pawlowski P. Plant meiosis:methods and protocols,methods in molecular biology. New York:Springer Science Business Media,2013:38-47.
[29]Hasterok R,Wolny E,Hosiawa M,et al. Comparative analysis of rDNA distribution in chromosomes of various species of Brassicaceae[J]. Annals of Botany,2005,97(2):205-216.
[30]Mason A S,Takahira J,Atri C,et al. Microspore culture reveals complex meiotic behaviour in a trigenomic Brassica hybrid[J]. BMC Plant Biology,2015,15:173-187.
[31]Gaebelein R,Alnajar D,Koopmann B,et al. Hybrids between Brassica napus and B. nigra show frequent pairing between the B and A/C genomes and resistance to blackleg[J]. Chromosome Research,2019,27(3):221-236.
[32]Yuan J C,Shi G Y,Yang Y,et al. Non-homologous chromosome pairing during meiosis in haploid Brassica rapa[J]. Plant Cell Reports,2021,40(12):2421-2434.
[33]Cui C,Ge X H,Gautam M,et al. Cytoplasmic and genomic effects on meiotic pairing in Brassica hybrids and allotetraploids from pair crosses of three cultivated diploids[J]. Genetics,2012,191(3):725-738.
[34]Gaebelein R,Schiessl S V,Samans B,et al. Inherited allelic variants and novel karyotype changes influence fertility and genome stability in Brassica allohexaploids[J]. New Phytologist,2019,223(2):965-978.
[35]Yang Y,Wei X C,Shi G Y,et al. Molecular and cytological analyses of A and C genomes at meiosis in synthetic allotriploid Brassica hybrids (ACC) between B.napus (AACC) and B.oleracea (CC)[J]. Journal of Plant Biology,2017,60(2):181-188.
[36]Mwathi M W,Gupta M,Atri C,et al. Segregation for fertility and meiotic stability in novel Brassica allohexaploids[J]. Theor Appl Genet,2017,130(4):767-776.
[37]Grey C,de Massy B.Coupling crossover and synaptonemal complex in meiosis[J]. Genes & Development,2022,36(1/2):4-6.
[38]Zickler D,Kleckner N. Recombination,pairing,and Synapsis of homologs during meiosis[J]. Cold Spring Harbor Perspectives in Biology,2015,7(6):a016626.
[39]Dubois E,de Muyt A,Soyer J L,et al. Building bridges to move recombination complexes[J]. PNAS,2019,116(25):12400-12409.
[40]Armstrong S. Analysis of the synaptonemal complex in Brassica using TEM[M]//Pawlowski W,Grelon M,Armstrong S. Plant meiosis: methods in molecular biology (methods and protocols). Totowa,NJ:Humana Press,2013.
[41]朱虹. 芸薹属ASY1基因的克隆及进化分析[M]. 武汉:华中农业大学,2014.
[42]Armstrong S J,Caryl A P,Jones G H,et al. Asy1,a protein required for meiotic chromosome Synapsis,localizes to axis-associated chromatin in Arabidopsis and Brassica[J]. Journal of Cell Science,2002,115(18):3645-3655.[PubMed]
[43]Ferdous M,Higgins J D,Osman K,et al. Inter-homolog crossing-over and Synapsis in Arabidopsis meiosis are dependent on the chromosome axis protein AtASY3[J]. PLoS Genetics,2012,8(2):e1002507.
[44]王冉冉.利用CRISPR/Cas9技术创建甘蓝型油菜染色体联会紊乱突变体[D]. 武汉:华中农业大学,2019:20-39.
[45]闫歌.芸薹属异源三倍体(ABC)的分子细胞遗传学研究[D]. 郑州:郑州大学,2019.
[46]Lambing C,Osman K,Nuntasoontorn K,et al. Arabidopsis PCH2 mediates meiotic chromosome remodeling and maturation of crossovers[J]. PLoS Genetics,2015,11(7):e1005372.
[47]Cuacos M,Lambing C,Pachon-Penalba M,et al. Meiotic chromosome axis remodelling is critical for meiotic recombination in Brassica rapa[J]. Journal of Experimental Botany,2021,72(8):3012-3027.
[48]Nicolas S D,Leflon M,Monod H,et al. Genetic regulation of meiotic cross-overs between related genomes in Brassica napus haploids and hybrids[J]. The Plant Cell,2009,21(2):373-385.
[49]Hernandez Sanchez-Rebato M,Bouatta A M,Gallego M E,et al. RAD54 is essential for RAD51-mediated repair of meiotic DSB in Arabidopsis[J]. PLoS Genetics,2021,17(5):e1008919.
[50]Zickler D,Kleckner N.Recombination,pairing,and Synapsis of homologs during meiosis[J]. Cold Spring Harbor Perspectives in Biology,2015,7(6):a016626.
[51]Pelé A,Falque M,Trotoux G,et al. Amplifying recombination genome-wide and reshaping crossover landscapes in Brassicas[J]. PLoS Genetics,2017,13(5):e1006794.
[52]鲁丹丹,李保全,安素妨,等. 甘蓝型油菜BnDMC1.A01基因的分离及序列分析[J]. 中国油料作物学报,2018,40(6):745-754.
[53]Kurzbauer M T,Uanschou C,Chen D,et al. The recombinases DMC1 and RAD51 are functionally and spatially separated during meiosis in Arabidopsis[J]. The Plant Cell,2012,24(5):2058-2070.
[54]Braynen J,Yang Y,Wei F,et al. Transcriptome analysis of floral buds deciphered an irregular course of meiosis in polyploid Brassica rapa[J]. Frontiers in Plant Science,2017,8:768.
[55]王帅鹏. 白菜型油菜BrDMC1响应盐胁迫的生理及分子机制研究[D]. 郑州:郑州大学,2020:46-55.
[56]Petukhova G,Klein H. Meiotic Recombination[M]//Wells R D,Bond J S,Klinman J,et al. Molecular life sciences. New York:Springer,2018.
[57]Berchowitz L E,Copenhaver G P.Genetic interference:dont stand so close to me[J]. Current Genomics,2010,11(2):91-102.
[58]Wang Y X,Copenhaver G P.Meiotic recombination:mixing it up in plants[J]. Annual Review of Plant Biology,2018,69:577-609.
[59]Boideau F,Pelé A,Tanguy C,et al. A modified meiotic recombination in Brassica napus largely improves its breeding efficiency[J]. Biology,2021,10(8):771.
[60]Nicolas S D,Leflon M,Liu Z,et al. Chromosome ‘speed dating’ during meiosis of polyploid Brassica hybrids and haploids[J]. Cytogenetic and Genome Research,2008,120(3/4):331-338.
[61]Nicolas S D,Mignon G L,Eber F,et al. Homeologous recombination plays a major role in chromosome rearrangements that occur during meiosis of Brassica napus haploids[J]. Genetics,2007,175(2):487-503.
[62]Mason A S,Nelson M N,Castello M C,et al. Genotypic effects on the frequency of homoeologous and homologous recombination in Brassicanapus×B. Carinata hybrids[J]. TAG,2011,122(3):543-553.
[63]Zhao M X,Du J C,Lin F,et al. Shifts in the evolutionary rate and intensity of purifying selection between two Brassica genomes revealed by analyses of orthologous transposons and relics of a whole genome triplication[J]. The Plant Journal,2013,76(2):211-222.
[64]Wang R H,Liu H L,Liu Z Y,et al. Genome-wide analysis of alternative splicing divergences between Brassica hexaploid and its parents[J]. Planta,2019,250(2):603-628.
[65]Tong C,Kole C,Liu L,et al. The asymmetrical evolution of the mesopolyploid Brassica oleracea genome[M]//Liu S,Snowdon R,Kole C. Compendium of plant genomes:the Brassica oleracea genome. Cham:Springer,2021:67-75.
[66]Town C D,Cheung F,Maiti R,et al. Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss,fragmentation,and dispersal after polyploidy[J]. The Plant Cell,2006,18(6):1348-1359.

相似文献/References:

[1]石小兵,杨航,赵致,等.三叶木通的组织培养和多倍体诱导[J].江苏农业科学,2016,44(05):69.
 Shi Xiaobing,et al.Tissue culture and polyploid induction of Akebia trifoliata[J].Jiangsu Agricultural Sciences,2016,44(18):69.
[2]刘露颖,赵喜亭,李明军.秋水仙碱诱导药用植物多倍体的研究进展[J].江苏农业科学,2014,42(04):178.
 Liu Luying,et al.Research progress of colchicine inducing medicinal polyploid plants[J].Jiangsu Agricultural Sciences,2014,42(18):178.
[3]王静,乔飞,江雪飞,等.不同倍性西瓜原生质体制备与低温耐受性分析[J].江苏农业科学,2015,43(10):206.
 Wang Jing,et al.Protoplast preparation and low temperature tolerance of watermelons with different ploidy[J].Jiangsu Agricultural Sciences,2015,43(18):206.
[4]郑玉红,张智,陆波,等.多倍体诱导和 60Co γ射线辐射对彩色马蹄莲Parfait分子水平遗传变异的影响[J].江苏农业科学,2015,43(03):142.
 Zheng Yuhong,et al.Effects of polyploids induction and 60 Co γ ray radiation on molecular genetic variation of Zantedeschia hybrid ‘Parfait’[J].Jiangsu Agricultural Sciences,2015,43(18):142.
[5]江明殊,王跃华,刘涛,等.多倍体川贝母脱毒苗的诱导[J].江苏农业科学,2015,43(03):41.
 Jiang Mingshu,et al.Induction of polyploid virus-free seedlings of Fritillaria cirrhosa D. Don[J].Jiangsu Agricultural Sciences,2015,43(18):41.
[6]何碧珠,杨超,朱萍,等.金线莲多倍体诱导研究[J].江苏农业科学,2016,44(09):70.
 He Bizhu,et al.Study on polyploid induction of Anoectochilus formosanus[J].Jiangsu Agricultural Sciences,2016,44(18):70.
[7]白英豪,张晓丽,李明军.秋水仙素诱导丹参多倍体研究进展[J].江苏农业科学,2018,46(05):18.
 Bai Yinghao,et al.Research progress of polyploidy induction of Salvia miltiorrhiza Bunge. by colchicine[J].Jiangsu Agricultural Sciences,2018,46(18):18.
[8]王翠平,陈建伟.甘蓝型油菜脯氨酸降解途径关键基因的进化分析[J].江苏农业科学,2018,46(17):28.
 Wang Cuiping,et al.Evolutionary analysis of key genes in proline degradation pathway of Brassica napus L.[J].Jiangsu Agricultural Sciences,2018,46(18):28.
[9]武娅歌,赵建华,宋晓飞,等.欧洲温室型黄瓜同源四倍体新种质的创制与鉴定[J].江苏农业科学,2019,47(18):141.
 Wu Yage,et al.Creation and identification of new autotetraploid germplasm of European greenhouse cucumber[J].Jiangsu Agricultural Sciences,2019,47(18):141.
[10]方庆.不同秋水仙素处理对石榴种子发芽及幼苗生长的影响[J].江苏农业科学,2019,47(19):142.
 Fang Qing.Effects of different colchicine treatments on seed germination and seedling growth of pomegranate species[J].Jiangsu Agricultural Sciences,2019,47(18):142.

备注/Memo

备注/Memo:
收稿日期:2022-04-02
基金项目:国家自然科学基金(编号:31460357);江西省重点研发计划(编号:20212BBF63014);江西省自然科学基金(编号:20202BABL205017)。
作者简介:陈纪鹏(1974—),男,河南西平人,博士,副教授,主要从事油菜细胞遗传学研究。E-mai:chensi20020606@163.com。
更新日期/Last Update: 2022-09-20