|本期目录/Table of Contents|

[1]陆珂,吴则东,李胜男.黄瓜诱变育种研究进展[J].江苏农业科学,2022,50(18):208-214.
 Lu Ke,et al.Research progress on mutation breeding of cucumber[J].Jiangsu Agricultural Sciences,2022,50(18):208-214.
点击复制

黄瓜诱变育种研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第18期
页码:
208-214
栏目:
现代遗传育种
出版日期:
2022-09-20

文章信息/Info

Title:
Research progress on mutation breeding of cucumber
作者:
陆珂吴则东李胜男
黑龙江大学现代农业与生态环境学院/黑龙江省普通高校甜菜遗传育种重点实验室,黑龙江哈尔滨 150080
Author(s):
Lu Keet al
关键词:
黄瓜诱变育种诱变技术突变体库研究进展
Keywords:
-
分类号:
S642.203.6
DOI:
-
文献标志码:
A
摘要:
黄瓜(Cucumis sativus L.)是重要的鲜食类蔬菜之一,是我国保护地生产的第一大蔬菜作物。随着国家经济发展,人们对黄瓜品质、抗性的要求越来越高,然而由于黄瓜的遗传基础趋于单一化,自然变异频率低,以及常规育种的年限长等限制因素,依靠黄瓜自发突变获得优良的遗传材料十分困难,黄瓜遗传育种进程变得愈发缓慢,因此选育高品质、抗性强的黄瓜新品种迫在眉睫。诱变育种技术以其可以提高变异频率、扩大变异谱等特点,近年来在选育新品种方面受到广泛的应用。本文通过对黄瓜诱变育种进行系统性的论述,从诱变方法的作用机理和在黄瓜育种中的应用着手,概述了化学诱变方法、物理诱变方法、航天诱变及插入突变的方法,并分析其优缺点;总结了诱变育种对黄瓜表型性状、生理生化和分子水平的影响以及黄瓜突变体的鉴定方法;重点阐述了突变体在黄瓜新品种选育过程中的应用;最终探讨了黄瓜诱变育种进程中存在的问题及解决办法;为科研工作者后续的研究提供参考与借鉴,对加快黄瓜育种进程具有重要意义。
Abstract:
-

参考文献/References:

[1]薛存宝. 黄瓜EMS诱变突变体库及TILLING平台的初步构建[D]. 哈尔滨:东北农业大学,2016.
[2]李伟,袁学平,杨迤然,等. 弱光对两品种黄瓜光合特性和生长发育的影响[J]. 东北农业大学学报,2012,43(1):97-103.
[3]周倩. 基于基因组测序的黄瓜高密度遗传图谱构建和果皮浅绿突变体基因定位[D]. 北京:中国农业科学院,2015.
[4]薛红霞,蒋举卫,李晓丽,等. 黄瓜突变体库的构建及表型变异的初步研究[J]. 核农学报,2019,33(3):432-439.
[5]卢霞,刘梦华,邓志军,等. 基于InDel标记的黄瓜种质资源遗传多样性分析[J]. 江苏农业科学,2021,49(1):49-54.
[6]罗琳,刘鉴,孙小程,等. 盐酸羟胺诱变黄瓜的生长及光合特征[J]. 中国瓜菜,2019,32(11):13-18.
[7]何书强. 黄瓜EMS突变体库的构建及表型分析[D]. 秦皇岛:河北科技师范学院,2019.
[8]王学征,朱娜娜,高清宇,等. EMS诱变西瓜种子条件分析[J]. 东北农业大学学报,2015,46(7):35-39.
[9]Klug W S,Cummings M R,Spencer C A,et al. Essentials of genetics [M]. Beijing:Higher Education Press,2016:286-287.
[10]王安邦,龚德勇,许奕,等. 物理诱变技术及其在香蕉育种中的研究进展[J]. 激光生物学报,2020,29(1):11-17,33.
[11]蔡世娟,秦垒,曹天光,等. 12C6+辐射对黄瓜光合色素含量及光合基因表达的影响[J]. 安徽农业科学,2020,48(18):59-62.
[12]Palma C F F,Castro-Alves V,Morales L O,et al. Spectral composition of light affects sensitivity to UV-B and photoinhibition in cucumber[J]. Frontiers in Plant Science,2021,11:610011.
[13]胡尊瑞,李志强,吴晓云,等. 冷等离子体处理对黄瓜幼苗特性的影响[J]. 西南农业学报,2016,29(12):2935-2938.
[14]赵冬生,刘金钰,刘巧泉. 水稻突变体库构建方法的新发展:CRISPR/Cas9系统[J]. 扬州大学学报(农业与生命科学版),2021,42(4):71-77.
[15]李鹏奎,王萍,王福全,等. 航天诱变白黄瓜品系05-33-6-1-2-49的选育[J]. 甘肃农业科技,2016(8):27-29.
[16]潘连公,陈彩能,包文生,等. 航天育种遗传机理与选育成效分析[J]. 中国农村小康科技,2007(1):33-35.
[17]冯路路. 农杆菌介导的黄瓜遗传转化体系优化及T-DNA插入突变体的创制与鉴定[D]. 南京:南京农业大学,2020.
[18]冯翠莲,万玥,冯小艳,等. 转基因甘蔗BtG-2的T-DNA侧翼序列分析及其转化事件特异性检测[J]. 热带作物学报,2021,42(9):2468-2477.
[19]Krysan P J,Young J C,Sussman M R. T-DNA as an insertional mutagen in Arabidopsis[J]. The Plant Cell,1999,11(12):2283-2290.
[20]Feldmann K A. T-DNA insertion mutagenesis in Arabidopsis:mutational spectrum[J]. The Plant Journal,1991,1(1):71-82.
[21]Trulson A J,Simpson R B,Shahin E A. Transformation of cucumber (Cucumis sativus L.) plants with Agrobacterium rhizogenes[J]. Theoretical and Applied Genetics,1986,73(1):11-15.
[22]冯路路,王雪艳,夏磊,等. 利用GFP基因的黄瓜T-DNA插入突变体构建与快速鉴定[J]. 核农学报,2021,35(7):1540-1547.
[23]李蕾,李季,孟永娇,等. 黄瓜T-DNA插入突变体库的构建[J]. 南京农业大学学报,2016,39(1):40-47.
[24]齐晓花,李倩倩,叶思佳,等. 黄瓜EMS诱变突变体库的构建[J]. 分子植物育种,2019,17(18):6066-6072.
[25]Qian M J,Rosenqvist E,Flygare A M,et al. UV-A light induces a robust and dwarfed phenotype in cucumber plants (Cucumis sativus L.) without affecting fruit yield[J]. Scientia Horticulturae,2020,263:109-110.
[26]陈玉霞,鉏晓艳,邱建辉,等. 60Co-γ辐射对黄瓜种子萌发及幼苗生长的影响[J]. 江苏农业科学,2020,48(1):146-150.
[27]Volkova P Y,Bondarenko E V,Kazakova E A. Radiation hormesis in plants[J]. Current Opinion in Toxicology,2022,30:100334.
[28]Liu P,Li Q,Li Y Y,et al. Effect of UV-B radiation treatments on growth,physiology and antioxidant systems of cucumber seedlings in artificial climate chamber[J]. 农业工程学报,2017,33(17):181-186.
[29]亓飞,林姝,宋蒙飞,等. 黄瓜抗白粉病突变体筛选与鉴定[J]. 中国农业科学,2020,53(1):172-182.
[30]张小花. 外源独脚金内酯对黄瓜盐胁迫耐受性的影响[D]. 兰州:西北师范大学,2021.
[31]蒋景龙,李丽. 转录组学分析外源H2S调控黄瓜响应盐胁迫的机理[J]. 华北农学报,2020,35(5):17-25.
[32]贺栾劲芝,宋晓飞,李晓丽,等. 黄瓜果实性状突变体的筛选与评价[J]. 北方园艺,2020(2):8-14.
[33]Chen Y,Wen H F,Pan J,et al. CsUFO is involved in the formation of flowers and tendrils in cucumber[J]. Theoretical and Applied Genetics,2021,134(7):2141-2150.
[34]Chen C,Cui Q Z,Huang S W,et al. An EMS mutant library for cucumber[J]. Journal of Integrative Agriculture,2018,17(7):1612-1619.
[35]吴海滨,朱汝财,赵德刚. TILLING技术的原理与方法述评[J]. 分子植物育种,2004,2(4):574-580.
[36]Berg J A,Hermans F W K,Beenders F,et al. The amino acid permease (AAP) genes CsAAP2A and SlAAP5A/B are required for oomycete susceptibility in cucumber and tomato[J]. Molecular Plant Pathology,2021,22(6):658-672.
[37]陈皓炜,刘志宇,安宇宁,等. 黄瓜发育早期耐旱突变体筛选与鉴定[J]. 江苏农业科学,2021,49(1):112-118.
[38]许兰杰,余永亮,杨红旗,等. 基于表型和DNA分子标记的菊花种质研究进展[J/OL]. 分子植物育种.(2021-09-29)[2022-01-02]. https://kns.cnki.net/kcms/detail/46.1068.S.20210928.1743.035.html.
[39]牛玉倩,李征. 黄瓜白化突变体分析与突变基因al的精细定位[J]. 西北农林科技大学学报(自然科学版),2021,49(5):88-95,122.
[40]赵子瑶. 与黄瓜株型性状相关的两个候选基因(长下胚轴CsNABP和圆叶CsPID)的功能初步分析[D]. 杨凌:西北农林科技大学,2018.
[41]韩杜斌. 蓝光对烟粉虱的驱避作用及对黄瓜抗虫性诱导机制研究[D]. 扬州:扬州大学,2021.
[42]郭嘉华,武兆昕,李蕾,等. 西芹腐根二次酮层物对黄瓜枯萎病的诱导抗性及其转录组学分析[J/OL]. 植物病理学报.(2021-11-22)[2022-01-05]. https://doi.org/10.13926/j.cnki.apps.000495.
[43]潘明,熊良荣,张克岩,等. 黄瓜黄叶基因YL的精细定位及候选基因预测[J]. 上海农业学报,2021,37(4):7-12.
[44]Yang Z G,Song M F,Cheng F,et al. A SNP mutation in homeodomain-DDT (HD-DDT) transcription factor results in multiple trichomes (mt) in cucumber (Cucumis sativus L.)[J]. Genes,2021,12(10):1478.
[45]遇瑶,潘健,温海帆,等. 黄瓜黄叶突变基因yl-5的鉴定与分析 [J/OL]. 分子植物育种.(2021-01-18)[2021-12-26]. https://kns.cnki.net/kcms/detail/46.1068.S.20210118.1715.012.html.
[46]Rong F X,Chen F F,Huang L,et al. A mutation in class Ⅲ homeodomain-leucine zipper (HD-ZIP III) transcription factor results in curly leaf (cul) in cucumber (Cucumis sativus L.)[J]. Theoretical and Applied Genetics,2019,132(1):113-123.
[47]Hao N,Du Y L,Li H Y,et al. CsMYB36 is involved in the formation of yellow green peel in cucumber (Cucumis sativus L.)[J]. Theoretical and Applied Genetics,2018,131(8):1659-1669.
[48]Song M F,Wei Q Z,Wang J,et al. Fine mapping of CsVYL,conferring virescent leaf through the regulation of chloroplast development in cucumber[J]. Frontiers in Plant Science,2018,9:432.
[49]潘玉朋. 黄瓜圆形果的QTL定位及无表皮毛(果刺)基因csgl3的图位克隆[D]. 杨凌:西北农林科技大学,2016.
[50]Wang C,Hao N,Xia Y T,et al. CsKDO is a candidate gene regulating seed germination lethality in cucumber[J]. Breeding Science,2021,71(4):417-425.
[51]Hu L L,Liu P,Jin Z S,et al. A mutation in CsHY2 encoding a phytochromobilin (PΦB) synthase leads to an elongated hypocotyl 1(elh1) phenotype in cucumber (Cucumis sativus L.)[J]. Theoretical and Applied Genetics,2021,134(8):2639-2652.
[52]王琛. 黄瓜根发育异常突变体及其候选基因的鉴定[D]. 哈尔滨:东北农业大学,2019.

相似文献/References:

[1]武玲,陆雅萍,丁泽华,等.草菇菌糠还田对大棚土壤肥力和黄瓜产量的影响[J].江苏农业科学,2013,41(05):372.
 Wu Ling,et al.Effects of mushroom substrate return to fields on soil fertility and cucumber yield in greenhouses[J].Jiangsu Agricultural Sciences,2013,41(18):372.
[2]徐强,耿友玲,齐晓花,等.不同栽培环境下黄瓜果实单宁含量主基因-多基因遗传分析[J].江苏农业科学,2014,42(12):194.
 Xu Qiang,et al.Genetic analysis of tannin content in cucumber by mixed model of major gene and polygene under different cultural environments[J].Jiangsu Agricultural Sciences,2014,42(18):194.
[3]董晓娅,邱白晶,管贤平.电化学分析方法检测黄瓜中残留的西维因[J].江苏农业科学,2014,42(11):337.
 Dong Xiaoya,et al(7).Detection of carbaryl residues in cucumber by electrochemical method[J].Jiangsu Agricultural Sciences,2014,42(18):337.
[4]王素平,孙艳军.H2O2预处理对低温下黄瓜幼苗抗氧化酶同工酶的影响[J].江苏农业科学,2013,41(06):123.
 Wang Suping,et al.Effect of H2O2 pretreatment on antioxidant isoenzyme in cucumber seedlings under chilling stress[J].Jiangsu Agricultural Sciences,2013,41(18):123.
[5]高启禹,徐光翠,张文博,等.褐黄孢链霉菌高产纳他霉素的诱变选育[J].江苏农业科学,2013,41(08):360.
 Gao Qiyu,et al.Induced breeding of high producing strains of natamycin from Streptomyces gilvosporeus by UV and microwave[J].Jiangsu Agricultural Sciences,2013,41(18):360.
[6]潘天春.黄皮洋葱新品种西葱3号的诱变选育[J].江苏农业科学,2014,42(08):150.
 Pan Tianchun.Mutation breeding of a new yellow onion cultivar “Xicong No.3”[J].Jiangsu Agricultural Sciences,2014,42(18):150.
[7]田福发,陈立昶,姜若勇,等.内置式秸秆反应堆对日光温室番茄和黄瓜生长的影响[J].江苏农业科学,2013,41(09):143.
 Tian Fufa,et al.Effect of built-in straw bio-reactor on growth of tomato and cucumber in greenhouse[J].Jiangsu Agricultural Sciences,2013,41(18):143.
[8]霍艳林,鲁顺保,关正君.盐胁迫对晋南部分主栽黄瓜品种种子萌发特性的影响[J].江苏农业科学,2016,44(03):165.
 Huo Yanlin,et al.Effect of salt stress on seed germination characteristics of cucumber cultivars in southern Shanxi[J].Jiangsu Agricultural Sciences,2016,44(18):165.
[9]王素平.钙和水杨酸对低温下黄瓜幼苗抗氧化酶同工酶的影响[J].江苏农业科学,2016,44(03):168.
 Wang Suping.Effects of Ca2+ and SA pretreatment on antioxidase isoforms in cucumber seedlings under chilling stress[J].Jiangsu Agricultural Sciences,2016,44(18):168.
[10]高攀,郭世荣,阳燕娟,等.Ca(NO3)2胁迫对白籽南瓜嫁接黄瓜幼苗生长及膜透性的影响[J].江苏农业科学,2013,41(11):157.
 Gao Pan,et al.Effects of Ca(NO3)2 stress on growth and cell membrane permeability of white seed pumpkin grafted cucumber seedlings[J].Jiangsu Agricultural Sciences,2013,41(18):157.

备注/Memo

备注/Memo:
收稿日期:2022-03-31
基金项目:黑龙江省省属高等学校基本科研业务费科研项目(编号:2020-KYYWF-1046);黑龙江省自然科学基金优秀青年项目(编号:YQ2021C032);中国博士后科学基金第70批面上资助项目(编号:2021M701127)。
作者简介:陆珂(1999—),女,江苏盐城人,硕士研究生,主要从事蔬菜遗传育种研究。E-mail:1127453553@qq.com。
通信作者:吴则东,博士,副研究员,主要从事作物遗传及分子育种研究,E-mail:331056376@qq.com;李胜男,博士研究生,讲师,主要从事蔬菜遗传育种,E-mail:dbndlsn@163.com。
更新日期/Last Update: 2022-09-20