|本期目录/Table of Contents|

[1]舒田,陈智虎,刘春艳,等.水果病虫害高光谱遥感应用研究进展[J].江苏农业科学,2022,50(20):19-29.
 Shu Tian,et al.Research progress on application of hyperspectral remote sensing in fruit diseases and pests[J].Jiangsu Agricultural Sciences,2022,50(20):19-29.
点击复制

水果病虫害高光谱遥感应用研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第20期
页码:
19-29
栏目:
“表型组学”专栏
出版日期:
2022-10-20

文章信息/Info

Title:
Research progress on application of hyperspectral remote sensing in fruit diseases and pests
作者:
舒田12陈智虎1刘春艳1许元红1赵泽英1
1.贵州省农业科学院科技信息研究所,贵州贵阳 550006; 2.贵州师范大学喀斯特研究院,贵州贵阳 550001
Author(s):
Shu Tianet al
关键词:
高光谱遥感监测识别水果病虫害展望发生调查
Keywords:
-
分类号:
S127
DOI:
-
文献标志码:
A
摘要:
水果病虫害是影响果树正常生长、果品质量提高和果业持续健康发展的主要因素之一,加强水果病虫害的发生调查与监测预警,防范重大病虫害的发生与流行,对于我国水果产业的稳步向好发展具有重要意义。传统的人工调查方法费时、费力、人工成本高且效率很低,已不能满足规模化、专业化、智能化、高效率的现代农业需求。作为能够连续获得地球表面物质光谱信息的新一代遥感技术,高光谱遥感集空间、辐射和光谱等三维信息于一体,由传统的成像遥感的定性分析向定量或半定量分析转化,光谱分辨率和空间分辨率进一步提高,已发展为当前水果病虫害鉴别的重要技术。本文基于检索平台WOS (Web of Science)和中国知网(China National Knowledge Infrastructure,简称CNKI)对水果病虫害高光谱遥感的国内外研究现状进行梳理分析,通过检索截至2021年12月31日该领域发表的相关文献,对发文年限、发文国家、主要机构、学科方向、研究关切等数据源进行了阐述分析;然后对当前水果病虫害高光谱遥感研究的五大高度关注点:病虫害早期诊断、光谱响应分析、不同病虫害识别、病虫害危害度定量分析与水果病虫害无损检测等应用领域的研究现状、遥感机理和技术方法进行了深入剖析,最后从水果病虫害图谱库建设、“星-空-地”遥感平台协同、模型方法的综合运用以及各类遥感系统综合应用方面提出展望。
Abstract:
-

参考文献/References:

[1]Wang Z J,Liu X,Jiang M,et al. The application of image retrieval technology in the prevention of diseases and pests in fruit trees[J]. IFIP Advances in Information and Communication Technology,2013,419:160-167.
[2]刘凤之,王海波,胡成志,等. 我国主要果树产业现状及“十四五”发展对策[J]. 中国果树,2021(1):1-5.
[3]贺立源. 农业信息化进展[M]:北京:中国农业科学技术出版社,2013:22.
[4]赵春晖,王立国,齐滨. 高光谱遥感图像处理方法及应用[M]. 北京:电子工业出版社,2016:20.
[5]刘颖,王克健,谢让金,等. 基于冠层高光谱信息的苹果树花量估测[J]. 中国农业科学,2016,49(18):3608-3617.
[6]黄文江,师越,董莹莹,等. 作物病虫害遥感监测研究进展与展望[J]. 智慧农业,2019,1(4):1-11.
[7]Bock C H,Poole G H,Parker P E,et al. Plant disease severity estimated visually,by digital photography and image analysis,and by hyperspectral imaging[J]. Critical Reviews in Plant Sciences,2010,29(2):59-107.
[8]Yao X,Zhu Y,Tian Y C,et al. Exploring hyperspectral bands and estimation indices for leaf nitrogen accumulation in wheat[J]. International Journal of Applied Earth Observation and Geoinformation,2010,12(2):89-100.
[9]童庆禧,张兵,张立福. 中国高光谱遥感的前沿进展[J]. 遥感学报,2016,20(5):689-707.
[10]Ghamisi P,Plaza J,Chen Y S,et al. Advanced spectral classifiers for hyperspectral images:a review[J]. IEEE Geoscience and Remote Sensing Magazine,2017,5(1):8-32.
[11]Mahlein A K,Alisaac E,Al Masri A,et al. Comparison and combination of thermal,fluorescence,and hyperspectral imaging for monitoring Fusarium head blight of wheat on spikelet scale[J]. Sensors,2019,19(10):2281.
[12]Yuan L,Huang Y B,Loraamm R W,et al. Spectral analysis of winter wheat leaves for detection and differentiation of diseases and insects[J]. Field Crops Research,2014,156(2):199-207.
[13]姚云军,秦其明,张自力,等. 高光谱技术在农业遥感中的应用研究进展[J]. 农业工程学报,2008,24(7):301-306.
[14]Chang C I. Hyperspectral data processing:algorithm design and analysis[M]. Manhattan:John Wiley & Sons,Inc,2013.
[15]Boochs F,Kupfer G,Dockter K,et al. Shape of the red edge as vitality indicator for plants[J]. International Journal of Remote Sensing,1990,11(10):1741-1753.
[16]Filella I,Penuelas J. The red edge position and shape as indicators of plant chlorophyll content,biomass and hydric status[J]. International Journal of Remote Sensing,1994,15(7):1459-1470.
[17]唐延林,黄敬峰,王秀珍,等. 水稻、玉米、棉花的高光谱及其红边特征比较[J]. 中国农业科学,2004,37(1):29-35.
[18]邹红玉,郑红平. 浅述植被“红边”效应及其定量分析方法[J]. 遥感信息,2010,25(4):112-116.
[19]谭昌伟. 农业遥感技术[M]. 北京:中国农业出版社,2017:16.
[20]浦瑞良,宫鹏. 高光谱遥感及其应用[M]. 北京:高等教育出版社,2000:11.
[21]王纪华,赵春江,黄文江,等. 农业定量遥感基础与应用[M]. 北京:科学出版社,2008:30.
[22]黄文江. 作物病害遥感监测机理与应用[M]. 北京:中国农业科学技术出版社,2009:25.
[23]赵春江. 农业遥感研究与应用进展[J]. 农业机械学报,2014,45(12):277-293.
[24]宋勇,陈兵,王琼,等. 无人机遥感监测作物病虫害研究进展[J]. 棉花学报,2021,33(3):291-306.
[25]Susicˇ N,ibrat U,irca S,et al. Discrimination between abiotic and biotic drought stress in tomatoes using hyperspectral imaging[J]. Sensors and Actuators B:Chemical,2018,273:842-852.
[26]Polder G,Blok P M,de Villiers H A C,et al. Potato virus Y detection in seed potatoes using deep learning on hyperspectral images[J]. Frontiers in Plant Science,2019,10:209.
[27]Yao Z F,Lei Y,He D J. Identification of powdery mildew and stripe rust in wheat using hyperspectral imaging[J]. Spectroscopy and Spectral Analysis,2019,39(3):969-976.
[28]裴鹏程. 利用无人机成像高光谱监测棉蚜为害等级研究[D]. 郑州:河南农业大学,2019:28.
[29]Martinelli F,Scalenghe R,Davino S,et al. Advanced methods of plant disease detection[J]. Agronomy for Sustainable Development,2015,35(1):1-25.
[30]Thomas S,Kuska M T,Bohnenkamp D,et al. Benefits of hyperspectral imaging for plant disease detection and plant protection:a technical perspective[J]. Journal of Plant Diseases and Protection,2018,125(1):5-20.
[31]Rumpf T,Mahlein A K,Steiner U,et al. Early detection and classification of plant diseases with Support Vector Machines based on hyperspectral reflectance[J]. Computers and Electronics in Agriculture,2010,74(1):91-99.
[32]张兵. 高光谱图处理与信息提取前沿[J]. 遥感学报,2016,20(5):1062-1090.
[33]Lowe A,Harrison N,French A P. Hyperspectral image analysis technique for the detection and classification of the early onset of plant disease and stress[J]. Plant Methods,2017,13(1):80.
[34]Apan A,Held A,Phinn S,et al. Detecting sugarcane ‘orange rust’ disease using EO-1 Hyperion hyperspectral imagery[J]. International Journal of Remote Sensing,2004,25(2):489-498.
[35]Kwmar A,Lee W S,Ehsani R,et al. Citrus greening disease (Huanglongbing) detection using aerial hyperspectral imaging[J]. Journal of Applied Remote Sensing,2012,6(1):063542.
[36]兰玉彬,朱梓豪,邓小玲,等. 基于无人机高光谱遥感的柑橘黄龙病植株的监测与分类[J]. 农业工程学报,2019,35(3):92-100.
[37]Qin J W,Burks T F,Ritenour M A,et al. Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence[J]. Journal of Food Engineering,2009,93(2):183-191.
[38]Yeh Y H F,Chung W C,Liao J Y,et al. A comparison of machine learning methods on hyperspectral plant disease assessments[J]. IFAC Proceedings Volumes,2013,46(4):361-365.
[39]唐华俊. 农业遥感研究进展与展望[J]. 农学学报,2018,8(1):167-171.
[40]张凝,杨贵军,赵春江,等. 作物病虫害高光谱遥感进展与展望[J]. 遥感学报,2021,25(1):403-422.
[41]赵英时. 遥感应用分析原理与方法[M]. 北京:科学出版社,2003:13.
[42]常庆瑞,蒋平安,周勇,等. 遥感技术导论[M]. 北京:科学出版社,2004:10.
[43]张永强,文丽萍,王振营. 高光谱遥感在监测作物受病虫肥胁迫中的应用[C]//提高全民科学素质、建设创新型国家——2006中国科协年会论文集(下册). 北京:中国科协技术协会学会学术部,2006:190-196.
[44]Delalieux S,van Aardt J,Keulemans W,et al. Detection of biotic stress (Venturia inaequalis) in apple trees using hyperspectral data:non-parametric statistical approaches and physiological implications[J]. European Journal of Agronomy,2007,27(1):130-143.
[45]梅慧兰,邓小玲,洪添胜,等. 柑橘黄龙病高光谱早期鉴别及病情分级[J]. 农业工程学报,2014,30(9):140-147.
[46]Oerke E C,Herzog K,Toepfer R. Hyperspectral phenotyping of the reaction of grapevine genotypes to Plasmopara viticola[J]. Journal of Experimental Botany,2016,67(18):5529-5543.
[47]Cheng T,Rivard B,Sánchez-Azofeifa G A,et al. Continuous wavelet analysis for the detection of green attack damage due to mountain pine beetle infestation[J]. Remote Sensing of Environment,2010,114(4):899-910.
[48]Zhang J C,Luo J H,Huang W J,et al. Continuous wavelet analysis based spectral feature selection for winter wheat yellow rust detection[J]. Intelligent Automation and Soft Computing,2011,17(5):531-540.
[49]Garcia-Ruiz F,Sankaran S,Maja J M,et al. Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees[J]. Computers and Electronics in Agriculture,2013,91(1):106-115.
[50]邓小玲,曾国亮,朱梓豪,等. 基于无人机高光谱遥感的柑橘患病植株分类与特征波段提取[J]. 华南农业大学学报,2020,41(6):100-108.
[51]郭冬梅. 柑橘部分病理病害和生理病害的高光谱识别研究[D]. 重庆:西南大学,2015:33.
[52]谭明,周润苗,庞小宁,等. 基于高光谱成像的病虫害识别研究——以“柑橘”为例[J]. 数字技术与应用,2021,39(8):48-50.
[53]李江波,饶秀勤,应义斌,等. 基于高光谱成像技术检测脐橙溃疡[J]. 农业工程学报,2010,26(8):222-228.
[54]Knauer U,Matros A,Petrovic T,et al. Improved classification accuracy of powdery mildew infection levels of wine grapes by spatial-spectral analysis of hyperspectral images[J]. Plant Methods,2017,13(1):47.
[55]温淑娴,李绍稳,金秀,等. 基于高光谱的砀山酥梨炭疽病害等级分类研究[J]. 计算机科学,2017,44(S1):216-219,223.
[56]王建涛,吴叶兰,廖禺,等. 基于卷积神经网络的柑橘病叶高光谱分类[J]. 信息技术与信息化,2020(3):84-87.
[57]Abdulridha J,Ampatzidis Y,Ehsani R,et al. Evaluating the performance of spectral features and multivariate analysis tools to detect laurel wilt disease and nutritional deficiency in avocado[J]. Computers and Electronics in Agriculture,2018,155:203-211.
[58]张建华,孔繁涛,李哲敏,等. 基于最优二叉树支持向量机的蜜柚叶部病害识别[J]. 农业工程学报,2014,30(19):222-231.
[59]刘阗宇,冯全,杨森. 基于卷积神经网络的葡萄叶片病害检测方法[J]. 东北农业大学学报,2018,49(3):73-83.
[60]邢东兴,常庆瑞. 基于光谱反射率的果树病虫害级别定量化测评——以红富士苹果树黄叶病害、红蜘蛛虫害为例[J]. 西北农林科技大学学报(自然科学版),2009,37 (11):143-148,155.
[61]刘燕德,肖怀春,孙旭东,等. 柑橘叶片黄龙病光谱特征选择及检测模型[J]. 农业工程学报,2018,34(3):180-187.
[62]孙晔. 基于高光谱成像技术的水蜜桃果实病害检测研究[D]. 南京:南京农业大学,2018:25-26.
[63]Mirik M,Michels G J Jr,Kassymzhanova-Mirik S,et al. Using digital image analysis and spectral reflectance data to quantify damage by greenbug (Hemitera:Aphididae) in winter wheat[J]. Computers and Electronics in Agriculture,2006,51(1/2):86-98.
[64]Huang L S,Zhao J L,Zhang D Y,et al. Identifying and mapping stripe rust in winter wheat using multi-temporal airborne hyperspectral images[J]. International Journal of Agriculture and Biology,2012,14(5):697-704.
[65]Kong W W,Liu F,Zhang C,et al. Fast detection of peroxidase (POD) activity in tomato leaves which infected with Botrytis cinerea using hyperspectral imaging[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2014,118:498-502.
[66]Tekle S,Mage I,Segtnan V H,et al. Near-infrared hyperspectral imaging of Fusarium-damaged oats (Avena sativa L.)[J]. Cereal Chemistry Journal,2015,92(1):73-80.
[67]Devadas R,Lamb D W,Simpfendorfer S,et al. Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves[J]. Precision Agriculture,2009,10(6):459-470.
[68]Prabhakar M,Prasad Y G,Thirupathi M,et al. Use of ground based hyperspectral remote sensing for detection of stress in cotton caused by leafhopper (Hemiptera:Cicadellidae)[J]. Computers and Electronics in Agriculture,2011,79(2):189-198.
[69]Joalland S,Screpanti C,Liebisch F,et al. Comparison of visible imaging,thermography and spectrometry methods to evaluate the effect of Heterodera schachtii inoculation on sugar beets[J]. Plant Methods,2017,13(1):73.
[70]Vanegas F,Bratanov D,Powell K,et al. A novel methodology for improving plant pest surveillance in vineyards and crops using UAV-based hyperspectral and spatial data[J]. Sensors ,2018,18(1):260.
[71]Zhang N,Pan Y C,Feng H K,et al. Development of Fusarium head blight classification index using hyperspectral microscopy images of winter wheat spikelets[J]. Biosystems Engineering,2019,186:83-99.
[72]马本学,应义斌,饶秀勤,等. 高光谱成像在水果内部品质无损检测中的研究进展[J]. 光谱学与光谱分析,2009,29(6):1611-1615.
[73]乔世成,田有文,何宽,等. 水果病虫害无损检测技术研究进展[J]. 食品科学,2019,40 (11):227-234.
[74]韩东海,刘新鑫,赵丽丽,等. 苹果水心病的光学无损检测[J]. 农业机械学报,2004,35(5):143-146.
[75]韩东海,刘新鑫,鲁超,等. 苹果内部褐变的光学无损伤检测研究[J]. 农业机械学报,2006,37(6):86-88,93.
[76]Teerachaichayut S,Terdwongworakul A,Thanapase W,et al. Non-destructive prediction of hardening pericarp disorder in intact mangosteen by near infrared transmittance spectroscopy[J]. Journal of Food Engineering,2011,106(3):206-211.
[77]刘思伽,田有文,冯迪,等. 基于高光谱成像的苹果病害无损检测方法[J]. 沈阳农业大学学报,2016,47(5):634-640.
[78]Siedliska A,Baranowski P,Zubik M,et al. Detection of fungal infections in strawberry fruit by VNIR/SWIR hyperspectral imaging[J]. Postharvest Biology and Technology,2018,139:115-126.
[79]章林忠,蔡雪珍,方从兵. 近红外光谱定量和定性分析技术在鲜食葡萄果实无损检测中的应用[J]. 浙江农业学报,2018,30(2):330-338.

相似文献/References:

[1]李永梅,张学俭,张立根.水稻氮素高光谱遥感估测模型研究[J].江苏农业科学,2016,44(08):435.
 Li Yongmei,et al.Study on hyperspectral remote sensing estimating model of nitrogen in rice[J].Jiangsu Agricultural Sciences,2016,44(20):435.
[2]颜丙囤,梁守真,王猛,等.花生叶绿素含量的高光谱遥感估算模型研究[J].江苏农业科学,2017,45(01):197.
 Yan Bingdun,et al.Study on hyperspectral remote sensing estimation model for peanut chlorophyll contents[J].Jiangsu Agricultural Sciences,2017,45(20):197.
[3]刘莉,戴黎,雷廷海,等.持续受渍对油菜叶片光谱特性的影响[J].江苏农业科学,2017,45(05):57.
 Liu li,et al.Effect of continuous waterlogged on hyperspectral characteristics of rape leaf[J].Jiangsu Agricultural Sciences,2017,45(20):57.
[4]孟禹弛,侯学会,王猛.不同生育期冬小麦叶面积指数高光谱遥感估算模型[J].江苏农业科学,2017,45(05):211.
 Meng Yuchi,et al.Hyperspectral remote sensing estimation model of leaf area index of winter wheat at different growth stages[J].Jiangsu Agricultural Sciences,2017,45(20):211.
[5]颜丙囤,侯学会,梁守真,等.花生叶鲜生物量的高光谱估算模型[J].江苏农业科学,2017,45(08):59.
 Yan Bingdun,et al.Hyperspectral estimation model of fresh biomass of peanut leaves[J].Jiangsu Agricultural Sciences,2017,45(20):59.
[6]张静静,周卫红,邹萌萌,等.高光谱遥感监测大面积土壤重金属污染的研究现状、原理及展望[J].江苏农业科学,2018,46(12):9.
 Zhang Jingjing,et al.Research status, principles and development trend of hyperspectral remote sensing for monitoring heavy metal pollution in large-area soils[J].Jiangsu Agricultural Sciences,2018,46(20):9.
[7]张超,杨可明,王敏,等.玉米铜污染实时动态监测的高光谱分形维数模型[J].江苏农业科学,2019,47(18):260.
 Zhang Chao,et al.Hyperspectral fractal dimension model for real-time monitoring of copper pollution in maize[J].Jiangsu Agricultural Sciences,2019,47(20):260.
[8]高颖,王延仓,顾晓鹤,等.基于微分变换定量反演土壤有机质及全氮含量[J].江苏农业科学,2020,48(24):220.
 Gao Ying,et al.Quantitative inversion of soil organic matter and total nitrogen content based on differential transformation[J].Jiangsu Agricultural Sciences,2020,48(20):220.
[9]王淼,储学远,钱家炜,等.区域水稻田土壤-作物系统重金属污染高光谱遥感定量估测[J].江苏农业科学,2023,51(12):172.
 Wang Miao,et al.Quantitative estimation of heavy metal pollution in soil-crop system of regional paddy field by hyperspectral remote sensing[J].Jiangsu Agricultural Sciences,2023,51(20):172.

备注/Memo

备注/Memo:
收稿日期:2022-04-18
基金项目:贵州省科学技术基金(编号:黔科合基础-ZK[2021]一般130号);科研机构创新能力建设专项(编号:黔科合服企[2021]15号);贵州省农科院青年基金(编号:黔农科院青年基金[2019]19号);贵州省农科院青年基金(编号:黔农科院青年科技基金(2021)08号)。
作者简介:舒田(1981—),男,湖南洞口人,博士,副研究员,从事农业遥感与农业信息技术研究。E-mail:378074794@qq.com。
更新日期/Last Update: 2022-10-20