|本期目录/Table of Contents|

[1]周国靓,郭新宇,郭尚敬,等.玉米维管系统表型高通量解析与多组学研究进展[J].江苏农业科学,2022,50(20):9-18.
 Zhou Guoliang,et al.Research progress of high-throughput analysis and multi-omics of maize vascular system phenotype[J].Jiangsu Agricultural Sciences,2022,50(20):9-18.
点击复制

玉米维管系统表型高通量解析与多组学研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第20期
页码:
9-18
栏目:
“表型组学”专栏
出版日期:
2022-10-20

文章信息/Info

Title:
Research progress of high-throughput analysis and multi-omics of maize vascular system phenotype
作者:
周国靓1234郭新宇234郭尚敬1张颖234
1.聊城大学农学院,山东聊城 252000; 2.北京市农林科学院信息技术研究中心,北京 100097;3.国家农业信息化工程技术研究中心,北京 100097; 4.数字植物北京市重点实验室,北京 100097
Author(s):
Zhou Guolianget al
关键词:
玉米维管束表型解析多组学分析
Keywords:
-
分类号:
S513.01
DOI:
-
文献标志码:
A
摘要:
维管束是贯穿玉米整株植物的输导组织和支持系统,其特性对玉米高产、稳产起着重要作用。随着对玉米需求的不断增长,以及作物源-库性状的改善和栽培水平的提高,维管束作为源库之间联系的重要纽带,其形态结构和生理功能对产量形成的作用日益受到育种工作者的重视。本文系统概述玉米根、茎、叶和果穗的维管束表型特征,以及维管系统在水分运输、物质营养运输及机械支撑等方面的功能;探讨维管系统表型的定义及其内涵;整理近年来国内外维管组织表型高通量获取方法并对比分析各种获取方法的优缺点;总结基于组学的维管系统表型-基因型关联组学分析研究进展;最后对玉米维管束系统研究面临的挑战和前景进行讨论,提出以表型组学为切入点,结合细胞生物学、计算机图像处理、计算数学等多学科交叉,高通量、系统获取维管束的表型信息,实现玉米果穗柄维管束表型的精准解析,以期为开展基于组学的结构-功能探究、计算与模拟提供大数据支撑,并为玉米的抗性评价、品种选育及功能机制研究提供有益参考。
Abstract:
-

参考文献/References:

[1]Jannink J L,Lorenz A J,Iwata H. Genomic selection in plant breeding:from theory to practice[J]. Briefings in Functional Genomics,2010,9(2):166-177.
[2]Araus J L,Cairns J E. Field high-throughput phenotyping:the new crop breeding frontier[J]. Trends in Plant Science,2014,19(1):52-61.
[3]Xu Y B. Envirotyping for deciphering environmental impacts on crop plants[J]. Theoretical and Applied Genetics,2016,129(4):653-673.
[4]Dhondt S,Wuyts N,Inzé D. Cell to whole-plant phenotyping:the best is yet to come[J]. Trends in Plant Science,2013,18(8):428-439.
[5]Zhao C J,Zhang Y,Du J J,et al. Crop phenomics:current status and perspectives[J]. Frontiers in Plant Science,2019,10:714.
[6]Yang W N,Feng H,Zhang X H,et al. Crop phenomics and high-throughput phenotyping:past decades,current challenges,and future perspectives[J]. Molecular Plant,2020,13(2):187-214.
[7]Knipfer T,Fricke W. Water uptake by seminal and adventitious roots in relation to whole-plant water flow in barley (Hordeum vulgare L.)[J]. Journal of Experimental Botany,2011,62(2):717-733.
[8]Henry A,Gowda V R P,Torres R O,et al. Variation in root system architecture and drought response in rice (Oryza sativa):phenotyping of the OryzaSNP panel in rainfed lowland fields[J]. Field Crops Research,2011,120(2):205-214.
[9]Passot S,Gnacko F,Moukouanga D,et al. Characterization of pearl millet root architecture and anatomy reveals three types of lateral roots[J]. Frontiers in Plant Science,2016,7:829.
[10]Henry A,Cal A J,Batoto T C,et al. Root attributes affecting water uptake of rice (Oryza sativa) under drought[J]. Journal of Experimental Botany,2012,63(13):4751-4763.
[11]唐连顺,张淑媛. 稀土化合物对玉米幼苗生理过程的影响[J]. 山西农业科学,1993,21(2):35-38.
[12]刘胜群,宋凤斌. 不同耐旱性玉米根系解剖结构比较研究[J]. 干旱地区农业研究,2007,25(2):86-91.
[13]王庭梁. 不同密度下玉米营养器官结构与产量的关系[D]. 郑州:河南农业大学,2008:16-18.
[14]李春奇. 群体密度对玉米器官建成及其结构的调节效应[D]. 郑州:河南农业大学,2011:14-17.
[15]Shane M W,McCully M E,Canny M J. The vascular system of maize stems revisited:implications for water transport and xylem safety[J]. Annals of Botany,2000,86(2):245-258.
[16]于海秋,王晓磊,蒋春姬,等. 土壤干旱下玉米幼苗解剖结构的伤害进程[J]. 干旱地区农业研究,2008,26(5):143-147.
[17]王娜,李凤海,王志斌,等. 不同耐密型玉米品种茎秆性状对密度的响应及与倒伏的关系[J]. 作物杂志,2011(3):67-70.
[18]崔海岩,靳立斌,李波,等. 遮阴对夏玉米茎秆形态结构和倒伏的影响[J]. 中国农业科学,2012,45(17):3497-3505.
[19]冯海娟,张善平,马存金,等. 种植密度对夏玉米茎秆维管束结构及茎流特性的影响[J]. 作物学报,2014,40(8):1435-1442.
[20]陈健辉. 玉米(Zea mays L.)叶脉发育的研究[J]. 广西植物,1999(1):65-69.
[21]汪黎明,郭庆法,王庆成. 中国玉米栽培学[M]. 上海:上海科学技术出版社,1986:44-50.
[22]Sakaguchi J,Fukuda H. Cell differentiation in the longitudinal veins and formation of commissural veins in rice (Oryza sativa) and maize (Zea mays)[J]. Journal of Plant Research,2008,121(6):593-602.
[23]Russell S H,Evert R F. Leaf vasculature in Zea mays L.[J]. Planta,1985,164(4):448-458.
[24]侯彦龙,马丹. 玉米生长发育规律研究现状[J]. 中国农业信息,2014(23):14.
[25]郑丕尧,李小云. 玉米不同叶位叶解剖结构的研究:Ⅱ. 不同叶位叶片维管束系统的观察[J]. 中国农业科学,1986,19(6):41-47,99.
[26]王群瑛,胡昌浩. 玉米茎秆抗倒特性的解剖研究[J]. 作物学报,1991,17(1):70-75,82.
[27]陶世蓉,初庆刚,东先旺,等. 不同株型玉米叶片形态结构的研究[J]. 玉米科学,1995(2):51-53.
[28]李春奇,王庭梁,程相文,等. 种植密度对夏玉米穗位叶片解剖结构的影响[J]. 作物学报,2011,37(11):2099-2105.
[29]姜雯宇,李智,张红亮,等. 光强对玉米幼苗不同叶位叶片花环结构的影响[J]. 河南农业科学,2013,42(2):34-37.
[30]王盛锋,高丽丽,刘自飞,等. 不同土壤水分供应下锌对玉米叶片超微结构的影响[J]. 中国生态农业学报,2013,21(8):959-965.
[31]李真真,张莉,李思,等. 玉米叶片气孔及花环和维管束结构对水分胁迫的响应[J]. 应用生态学报,2014,25(10):2944-2950.
[32]邵萌,张颖,郭新宇. 玉米果穗养分运输组织的表型研究进展[J]. 中国农业科技导报,2016,18(3):38-45.
[33]何启平,董树亭,高荣岐. 玉米果穗维管束系统的发育及其与穗粒库容的关系[J]. 作物学报,2005,31(8):995-1000,1105.
[34]孟剑霞,杨晓玲,郭金耀,等. 玉米果穗发育的维管束特性研究[J]. 中国农学通报,2005,21(7):216-219.
[35]张善平,冯海娟,刘鹏,等. 夏玉米果穗不同部位小穗轴维管束显微结构特点及其对子粒发育的影响[J]. 玉米科学,2017,25(6):58-62,72.
[36]van den Honert T H. Water transport in plants as a catenary process[J]. Discussions of the Faraday Society,1948,3:146-153.
[37]Steudle E,Frensch J. Water transport in plants:role of the apoplast[J]. Plant and Soil,1996,187(1):67-79.
[38]Liu X F,Zhang S Q,Shan L. Heterosis for water uptake by maize (Zea mays L.) roots under water deficit:responses at cellular,single-root and whole-root system levels[J]. Journal of Arid Land,2013,5(2):255-265.
[39]Lynch J P,Chimungu J G,Brown K M. Root anatomical phenes associated with water acquisition from drying soil:targets for crop improvement[J]. Journal of Experimental Botany,2014,65(21):6155-6166.
[40]Tyree M T,Davis S D,Cochard H. Biophysical perspectives of xylem evolution:is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction?[J]. IAWA Journal,1994,15(4):335-360.
[41]Tyree M T,Zimmermann M H. Xylem structure and the ascent of sap[M]. Berlin:Springer,2002.
[42]Roth-Nebelsick A,Uhl D,Mosbrugger V,et al. Evolution and function of leaf venation architecture:a review[J]. Annals of Botany,2001,87(5):553-566.
[43]Zwieniecki M A,Boyce C K,Holbrook N M. Functional design space of single-veined leaves:role of tissue hydraulic properties in constraining leaf size and shape[J]. Annals of Botany,2004,94(4):507-513.
[44]Covshoff S,Hibberd J M. Integrating C4 photosynthesis into C3 crops to increase yield potential[J]. Current Opinion in Biotechnology,2012,23(2):209-214.
[45]Crespo H M,Frean M,Cresswell C F,et al. The occurrence of both C3 and C4 photosynthetic characteristics in a single Zea mays plant[J]. Planta,1979,147(3):257-263.
[46]Fritz E,Evert R F,Nasse H. Loading and transport of assimilates in different maize leaf bundles[J]. Planta,1989,178(1):1-9.
[47]张凤路,崔彦宏,王志敏,等. 玉米籽粒小穗柄维管束发育状况与籽粒败育关系研究[J]. 河北农业大学学报,1999,22(1):16-19.
[48]何启平,董树亭,高荣岐. 不同类型玉米品种果穗维管束的比较研究[J]. 作物学报,2007,33(7):1187-1196.
[49]Chang H,Loesch P,Zuber M. Effects of recurrent selection for crushing strength on morphological and anatomical stalk traits in Corn[J]. Crop Science,1976,16(5):621-625.
[50]孙世贤,戴俊英,顾慰连. 氮、磷、钾肥对玉米倒伏及其产量的影响[J]. 中国农业科学,1989,22(3):28-33,96.
[51]王立新,郭强,苏青. 玉米抗倒性与茎秆显微结构的关系[J]. 植物学通报,1990,25(3):34-36.
[52]段民孝. 从农大108和郑单958中得到的玉米育种启示[J]. 玉米科学,2005,13(4):49-52.
[53]赵明,李建国,张宾,等. 论作物高产挖潜的补偿机制[J]. 作物学报,2006,32(10):1566-1573.
[54]陈传永,侯玉虹,孙锐,等. 密植对不同玉米品种产量性能的影响及其耐密性分析[J]. 作物学报,2010,36(7):1153-1160.
[55]Zhang Y,Du J J,Wang J L,et al. High-throughput micro-phenotyping measurements applied to assess stalk lodging in maize (Zea mays L.)[J]. Biological Research,2018,51(1):40.
[56]李乐,曾辉,郭大立. 叶脉网络功能性状及其生态学意义[J]. 植物生态学报,2013,37(7):691-698.
[57]Sack L,Scoffoni C. Leaf venation:structure,function,development,evolution,ecology and applications in the past,present and future[J]. The New Phytologist,2013,198(4):983-1000.
[58]Blonder B,Violle C,Bentley L P,et al. Venation networks and the origin of the leaf economics spectrum[J]. Ecology Letters,2011,14(2):91-100.
[59]Burton A L,Williams M,Lynch J P,et al. RootScan:software for high-throughput analysis of root anatomical traits[J]. Plant and Soil,2012,357(1/2):189-203.
[60]Du J J,Zhang Y,Guo X Y,et al. Micron-scale phenotyping quantification and three-dimensional microstructure reconstruction of vascular bundles within maize stalks based on micro-CT scanning[J]. Functional Plant Biology,2016,44(1):10-22.
[61]Huang C,Chen Q Y,Xu G H,et al. Identification and fine mapping of quantitative trait loci for the number of vascular bundle in maize stem[J]. Journal of Integrative Plant Biology,2016,58(1):81-90.
[62]Wu H W,Jaeger M,Wang M,et al. Three-dimensional distribution of vessels,passage cells and lateral roots along the root axis of winter wheat (Triticum aestivum)[J]. Annals of Botany,2011,107(5):843-853.
[63]Chimungu J G,Loades K W,Lynch J P. Root anatomical phenes predict root penetration ability and biomechanical properties in maize (Zea mays)[J]. Journal of Experimental Botany,2015,66(11):3151-3162.
[64]Joshua C,Hamid L,Chun Y H,et al. RootScan and RootAnalyzer applied to a sample maize image[J]. PLoS One,2015,10(9):e0137655.
[65]Pan X D,Ma L M,Zhang Y,et al. Three-dimensional reconstruction of maize roots and quantitative analysis of metaxylem vessels based on X-ray micro-computed tomography[J]. Canadian Journal of Plant Science,2017,98(2):457-466.
[66]Legland D,Devaux M F,Guillon F. Statistical mapping of maize bundle intensity at the stem scale using spatial normalisation of replicated images[J]. PLoS One,2014,9(3):e90673.
[67]Zhang Y,Legay S,Barrière Y,et al. Color quantification of stained maize stem section describes lignin spatial distribution within the whole stem[J]. Journal of Agricultural and Food Chemistry,2013,61(13):3186-3192.
[68]Zhang Y,Ma L,Pan X,et al. Micron-scale phenotyping techniques of maize vascular bundles based on X-ray microcomputed tomography[J]. Journal of Visualized Experiments,2018(140):58501.
[69]Zhang Y,Wang J L,Du J J,et al. Dissecting the phenotypic components and genetic architecture of maize stem vascular bundles using high-throughput phenotypic analysis[J]. Plant Biotechnology Journal,2021,19(1):35-50.
[70]Cobb J N,DeClerck G,Greenberg A,et al. Next-generation phenotyping:requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement[J]. Theoretical and Applied Genetics,2013,126(4):867-887.
[71]Bolger M,Schwacke R,Gundlach H,et al. From plant genomes to phenotypes[J]. Journal of Biotechnology,2017,261:46-52.
[72]薛晓杰,杜晓云,盖艺,等. 基于GBS测序开发SNP在植物上的应用进展[J]. 江苏农业科学,2020,48(13):62-68.
[73]Campbell M T,Knecht A C,Berger B,et al. Integrating image-based phenomics and association analysis to dissect the genetic architecture of temporal salinity responses in rice[J]. Plant Physiology,2015,168(4):1476-1489.
[74]Campbell M T,Du Q,Liu K,et al. A comprehensive image-based phenomic analysis reveals the complex genetic architecture of shoot growth dynamics in rice (Oryza sativa)[J]. The Plant Genome,2017,10(2):1-14.
[75]Housley T L,Peterson D M. Oat stem vascular size in relation to kernel number and weight.Ⅰ.Controlled environment[J]. Crop Science,1982,22(2):259-263.
[76]Cui K,Peng S,Xing Y,et al. Molecular dissection of the genetic relationships of source,sink and transport tissue with yield traits in rice[J]. Theoretical and Applied Genetics,2003,106(4):649-658.
[77]Peterson D M,Housley T L,Luk T M. Oat stem vascular size in relation to kernel number and weight.Ⅱ.Field environment[J]. Crop Science,1982,22(2):274-278.
[78]Nátrová Z. Anatomical characteristics of the uppermost internode of winter wheat genoypes differing in stem length[J]. Biologia Plantarum,1991,33(6):491-494.
[79]Teng S,Qian Q,Zeng D L,et al. QTL analysis of rice peduncle vascular bundle system and panicle traits[J]. Acta Botanica Sinica,2002,44(3):301-306.
[80]陈顺强,汪洋,章志宏,等. 用RFLP标记剖析水稻穗颈维管束及穗部性状的遗传基础[J]. 武汉植物学研究,2004,22(1):15-21.
[81]荆彦辉,孙传清,谭禄宾,等. 云南元江普通野生稻穗颈维管束和穗部性状的QTL分析[J]. 遗传学报,2005,32(2):178-182.
[82]Li K,Wang H W,Hu X J,et al. Genome-wide association study reveals the genetic basis of stalk cell wall components in maize[J]. PLoS One,2016,11(8):e0158906.
[83]孙高阳. 玉米穗柄维管束和株型相关性状的全基因组关联分析[D]. 郑州:河南农业大学,2017:13-21.
[84]杜宇茜. 玉米茎秆维管束相关性状QTL定位[D]. 保定:河北农业大学,2018:12-30.

相似文献/References:

[1]孙建伟.水涝胁迫对玉米细胞保护酶同工酶的影响[J].江苏农业科学,2013,41(04):85.
[2]刘荣,张卫建,齐华,等.密植型玉米“中单909”高产群体结构特征[J].江苏农业科学,2013,41(05):56.
 Liu Rong,et al.Study on high yield population structure of close planting maize cultivar “Zhongdan 909”[J].Jiangsu Agricultural Sciences,2013,41(20):56.
[3]沈浜凯,肖龙云,冯乃杰,等.黄腐酸和AM真菌对玉米幼苗抗旱性的影响[J].江苏农业科学,2013,41(05):64.
 Shen Bangkai,et al.Effects of fulvic acid and AM fungi on drought resistance of maize seedlings[J].Jiangsu Agricultural Sciences,2013,41(20):64.
[4]张金然,缑艳霞,孙丽鹏.固氮螺菌157对玉米、向日葵的促生长作用[J].江苏农业科学,2014,42(12):116.
 Zhang Jinran,et al.Effects of Azospirillum 157 on growth of maize and sunflower[J].Jiangsu Agricultural Sciences,2014,42(20):116.
[5]白小军,吴燕,牛艳,等.玉米中乙草胺和莠去津残留量GC-MS/MS分析法的建立[J].江苏农业科学,2014,42(11):334.
 Bai Xiaojun,et al().Establishment of GC-MS/MS analysis method of acetochlor and atrazine residues in maize[J].Jiangsu Agricultural Sciences,2014,42(20):334.
[6]邹晓威,王娜,刘芬,等.玉米抗病相关基因在玉米与玉米丝黑穗病菌、玉米黑粉病菌互作过程中的表达差异分析[J].江苏农业科学,2014,42(11):150.
 Zou Xiaowei,et al(0).Different expression of resistance-related genes between Sporisorium reilianum and Ustilago maydis interact with corn[J].Jiangsu Agricultural Sciences,2014,42(20):150.
[7]杨洪兴,陈静,陈艳萍.江苏省玉米机械化生产的发展及育种对策思考[J].江苏农业科学,2014,42(11):116.
 Yang Hongxing,et al().Development and breeding strategy of mechanized production of maize in Jiangsu Province[J].Jiangsu Agricultural Sciences,2014,42(20):116.
[8]张丽妍,霍剑锋,孟繁盛,等.不同肥料、施肥水平及施用方法对玉米产量、性状及效益的影响[J].江苏农业科学,2014,42(11):119.
 Zhang Liyan,et al (9).Effects of different fertilizers,fertilizer levels and fertilizing methods on yield,characters and benefit of maize[J].Jiangsu Agricultural Sciences,2014,42(20):119.
[9]王雷,崔震海,张立军.玉米C4型PEPC全长基因的克隆与表达载体构建[J].江苏农业科学,2014,42(11):26.
 Wang Lei,et al().Cloning and expression vector construction of full-length C4 type PEPC gene in maize[J].Jiangsu Agricultural Sciences,2014,42(20):26.
[10]雷恩,赵光明,刘艳红.不同稀释浓度松土保水剂对玉米营养生长的影响[J].江苏农业科学,2013,41(06):77.
 Lei En,et al.Effect of different dilutions of super absorbent polymer on vegetative growth of maize[J].Jiangsu Agricultural Sciences,2013,41(20):77.

备注/Memo

备注/Memo:
收稿日期:2021-12-01
基金项目:北京市农林科学院作物表型协同创新中心项目(编号:KJCX201917);北京市农林科学院青年基金(编号:QNJJ202124);北京市自然基金面上项目(编号:5202018);现代农业产业技术体系专项(编号:CARS-02);北京市农林科学院改革与发展项目。
作者简介:周国靓(1996—),女,山东淄博人,硕士研究生,主要从事作物表型组学研究。E-mail:zhouguoling96@qq.com。
通信作者:张颖,博士,副研究员,主要从事作物表型组学研究。E-mail:zhangying@nercita.org.cn。
更新日期/Last Update: 2022-10-20