|本期目录/Table of Contents|

[1]王新亮,彭玲,王健,等.盐碱胁迫下平邑甜茶的转录组分析[J].江苏农业科学,2022,50(22):29-37.
 Wang Xinliang,et al.Transcriptome analysis of Malus hupehensis Rehd. under saline-alkali stress[J].Jiangsu Agricultural Sciences,2022,50(22):29-37.
点击复制

盐碱胁迫下平邑甜茶的转录组分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第22期
页码:
29-37
栏目:
“转录组学”专栏
出版日期:
2022-11-20

文章信息/Info

Title:
Transcriptome analysis of Malus hupehensis Rehd. under saline-alkali stress
作者:
王新亮12彭玲2王健1贾晶晶1唐立平1
1.滨州学院学报编辑部,山东滨州 256603; 2.滨州学院山东省黄河三角洲生态环境重点实验室,山东滨州 256603
Author(s):
Wang Xinlianget al
关键词:
平邑甜茶盐碱胁迫转录组基因表达胁迫响应
Keywords:
-
分类号:
S661.101
DOI:
-
文献标志码:
A
摘要:
为了解平邑甜茶对盐碱胁迫的响应机制,利用RNA-seq技术检测了盐碱胁迫下其幼苗的基因表达水平。结果显示,每个样品平均产出6.48 Gb数据,43.82×106 个原始数据;纯净数据为42.71×106~43.44×106个,表达的基因数为 41 008,其中已知的基因为38 465个,预测的新基因为2 543个。基因表达量聚类分析显示,根和叶中的基因分别聚类成12 个基因簇,并对根中基因簇1、7、9、10、11以及叶中基因簇4、7、8、10进行了GO和KEGG 富集分析。GO富集分析结果显示,生物过程中的基因主要富集于细胞过程和代谢过程中,细胞组分中的基因主要富集于膜、膜部分、细胞和细胞器中,分子功能中的基因主要富集于结合和催化活性中;KEGG富集分析显示,根和叶中富集基因较多的途径有内质网内蛋白质加工、碳代谢、氨基酸的生物合成、核糖体、RNA转运、植物激素信号转导等。进一步分析表明,叶绿素a/b结合蛋白、查尔酮合成酶、查尔酮-黄酮异构酶、热休克蛋白、转录因子、细胞色素P450蛋白和未知蛋白等编码基因参与了平邑甜茶对盐碱胁迫的响应,并发挥了重要的调节作用。本研究有助于进一步了解平邑甜茶对混合耐盐碱胁迫响应的分子机制,为今后苹果砧木抗盐碱分子育种提供参考。
Abstract:
-

参考文献/References:

[1]毛恋,芦建国,江海燕. 植物响应盐碱胁迫的机制[J]. 分子植物育种,2020,18(10):3441-3448.
[2]Wang W X,Vinocur B,Altman A. Plant responses to drought,salinity and extreme temperatures:towards genetic engineering for stress tolerance[J]. Planta,2003,218(1):1-14.
[3]朱建峰,崔振荣,吴春红,等. 我国盐碱地绿化研究进展与展望[J]. 世界林业研究,2018,31(4):70-75.
[4]费小钰. 盐碱胁迫对转Lc-CDPK基因水稻生理生化特性的影响[D]. 长春:吉林农业大学,2017.
[5]关元秀,刘高焕,刘庆生,等. 黄河三角洲盐碱地遥感调查研究[J]. 遥感学报,2001,5(1):46-52,86.
[6]李子英,丛日春,杨庆山,等. 盐碱胁迫对柳树幼苗生长和渗透调节物质含量的影响[J]. 生态学报,2017,37(24):8511-8517.
[7]王佺珍,刘倩,高娅妮,等. 植物对盐碱胁迫的响应机制研究进展[J]. 生态学报,2017,37(16):5565-5577.
[8]张强,赵文娟,陈卫峰,等. 盐碱地修复与保育研究进展[J]. 天津农业科学,2018,24(4):65-70.
[9]何瑞成,吴景贵. 有机物料对原生盐碱地土壤生物学性质的影响[J]. 土壤学报,2018,55(3):774-782.
[10]孙明法,严国红,王爱民,等. 水稻耐盐育种研究进展[J]. 大麦与谷类科学,2017,34(4):1-9.
[11]Musacchi S,Serra S. Apple fruit quality:overview on pre-harvest factors[J]. Scientia Horticulturae,2018,234:409-430.
[12]2018年中国苹果产量[DB/OL]. (2020-11-05)[2021-11-08]. http://www.fao.org/faostat/en/#data/QCL.
[13]Sabatino L,Iapichino G,DAnna F,et al. Hybrids and allied species as potential rootstocks for eggplant:effect of grafting on vigour,yield and overall fruit quality traits[J]. Scientia Horticulturae,2018,228:81-90.
[14]Wang Y X,Hu Y,Zhu Y F,et al. Transcriptional and physiological analyses of short-term iron deficiency response in apple seedlings provide insight into the regulation involved in photosynthesis[J]. BMC Genomics,2018,19(1):461-472.
[15]Jia X M,Wang H,Svetla S,et al. Comparative physiological responses and adaptive strategies of apple Malus halliana to salt,alkali and saline-alkali stress[J]. Scientia Horticulturae,2019,245:154-162.
[16]Liu D D,Dong Q L,Sun C,et al. Functional characterization of an apple apomixis-related MhFIE gene in reproduction development[J]. Plant Science,2012,185/186:105-111.
[17]Daccord N,Celton J M,Linsmith G,et al. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development[J]. Nature Genetics,2017,49(7):1099-1106.
[18]Jung S,Lee T,Cheng C H,et al. 15 years of GDR:new data and functionality in the Genome Database for Rosaceae[J]. Nucleic Acids Research,2018,47(D1):D1137-D1145.
[19]Li B,Dewey C N. RSEM:accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics,2011,12:323.
[20]Kumar L,Futschik M E. Mfuzz:a software package for soft clustering of microarray data[J]. Bioinformation,2007,2(1):5-7.
[21]Wang L K,Feng Z X,Wang X,et al. DEGseq:an R package for identifying differentially expressed genes from RNA-seq data[J]. Bioinformatics,2009,26(1):136-138.
[22]Das P,Majumder A L. Transcriptome analysis of grapevine under salinity and identification of key genes responsible for salt tolerance[J]. Functional & Integrative Genomics,2019,19(1):61-73
[23]Li H Y,Tang X Q,Zhu J F,et al. De novo transcriptome characterization,gene expression profiling and ionic responses of Nitraria sibirica Pall. under salt stress[J]. Forests,2017,8(6):211.
[24]董明,再吐尼古丽·库尔班,吕芃,等. 高粱苗期耐盐性转录组分析和基因挖掘[J]. 中国农业科学,2019,52(22):3987-4001.
[25]刘佳,田云,邓家林. 碱胁迫下榆叶梅差异基因表达分析[J]. 核农学报,2020,34(7):1397-1408.
[26]高光林,姜卫兵,俞开锦,等. 盐胁迫对果树光合生理的影响[J]. 果树学报,2003,20(6):493-497.
[27]章妮,暴涵,崔博亮,等. 毛竹查尔酮合成酶基因家族全基因组分析[J]. 分子植物育种,2022,20(3):817-825.
[28]Yuan H,Wu J Q,Wang X Q,et al. Computational identification of amino-acid mutations that further improve the activity of a chalcone-flavonone isomerase from Glycine max[J]. Frontiers in Plant Science,2017,8:248.
[29]Hu W H,Hu G C,Han B. Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice[J]. Plant Science,2009,176(4):583-590.
[30]Wang C,Gao C Q,Wang L Q,et al. Comprehensive transcriptional profiling of NaHCO3-stressed Tamarix hispida roots reveals networks of responsive genes[J]. Plant Molecular Biology,2014,84(1/2):145-157.
[31]Hwang E W,Kim K A,Park S C,et al. Expression profiles of hot pepper (Capsicum annuum) genes under cold stress conditions[J]. Journal of Biosciences,2005,30(5):657-667.
[32]Chandel G,Dubey M,Meena R. Differential expression of heat shock proteins and heat stress transcription factor genes in rice exposed to different levels of heat stress[J]. Journal of Plant Biochemistry and Biotechnology,2013,22(3):277-285.
[33]Miller G,Mittler R. Could heat shock transcription factors function as hydrogen peroxide sensors in plants?[J]. Annals of Botany,2006,98(2):279-288.
[34]张楠,王映红,王志敏,等. 植物热激转录因子家族的研究进展[J]. 生物工程学报,2021,37(4):1155-1167.
[35]刘奕媺,于洋,方军. 盐碱胁迫及植物耐盐碱分子机制研究[J]. 土壤与作物,2018,7(2):201-211.
[36]Guan L,Haider M S,Khan N,et al. Transcriptome sequence analysis elaborates a complex defensive mechanism of grapevine (Vitis vinifera L.) in response to salt stress[J]. International Journal of Molecular Sciences,2018,19(12):4019.
[37]An J P,Yao J F,Xu R R,et al. An apple NAC transcription factor enhances salt stress tolerance by modulating the ethylene response[J]. Physiologia Plantarum,2018,164(3):279-289.
[38]Wu B,Hu Y N,Huo P J,et al. Transcriptome analysis of hexaploid hulless oat in response to salinity stress[J]. PLoS One,2017,12(2):e0171451.
[39]Li J J,Liu H,Yang C,et al. Genome-wide identification of MYB genes and expression analysis under different biotic and abiotic stresses in Helianthus annuus L.[J]. Industrial Crops and Products,2020,143:111924.
[40]Li B Z,Fan R N,Guo S Y,et al. The Arabidopsis MYB transcription factor,MYB111 modulates salt responses by regulating flavonoid biosynthesis[J]. Environmental and Experimental Botany,2019,166:103807.
[41]Berg J M,Shi Y. The galvanization of biology:a growing appreciation for the roles of zinc[J]. Science,1996,271(5252):1081-1085.
[42]向建华,李灵之,陈信波. 植物非生物逆境相关锌指蛋白基因的研究进展[J]. 核农学报,2012,26(4):666-672,716.
[43]Siminszky B,Corbin F T,Ward E R,et al. Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides[J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96(4):1750-1755.
[HJ2mm][44]Li D M,Wang Y,Han K L. Recent density functional theory model calculations of drug metabolism by cytochrome P450[J]. Coordination Chemistry Reviews,2012,256(11/12):1137-1150.
[45]Xu J,Wang X Y,Guo W Z. The cytochrome P450 superfamily:key players in plant development and defense[J]. Journal of Integrative Agriculture,2015,14(9):1673-1686.
[46]Khanom S,Jang J,Lee O R. Overexpression of ginseng cytochrome P450 CYP736A12 alters plant growth and confers phenylurea herbicide tolerance in Arabidopsis[J]. Journal of Ginseng Research,2019,43(4):645-653.

相似文献/References:

[1]王光野,曹高品,丁娇,等.盐碱混合胁迫对灰绿藜丙二醛积累的影响[J].江苏农业科学,2014,42(09):354.
 Wang Guangye,et al.Effect of mixed salinity-alkalinity stress on malondialdehyde accumulation of Chenopodium glaucum L.[J].Jiangsu Agricultural Sciences,2014,42(22):354.
[2]王小山,朱平华,鲍国成,等.盐碱胁迫对紫花苜蓿根、茎和叶重要养分离子平衡的影响[J].江苏农业科学,2013,41(07):190.
 Wang Xiaoshan,et al.Effect of salt stress on important nutrient ion balance in roots,stems and leaves of Medicago sativa[J].Jiangsu Agricultural Sciences,2013,41(22):190.
[3]方淑梅,梁喜龙,纪伟波,等.外源NO对盐碱胁迫下水稻幼苗生长抑制的缓解作用[J].江苏农业科学,2013,41(08):67.
 Fang Shumei,et al.Mitigative effect of exogenous nitric oxide on growth inhibition of rice seedlings under saline-alkali stress[J].Jiangsu Agricultural Sciences,2013,41(22):67.
[4]单成海.盐碱胁迫对洋葱部分理化特性的影响[J].江苏农业科学,2013,41(11):193.
 Shan Chenghai.Effect of saline-alkaline stress on partial physicochemical properties of onion[J].Jiangsu Agricultural Sciences,2013,41(22):193.
[5]盖玉红,牛陆,董宝池,等.不同浓度盐、碱胁迫对野生大豆光合特性和生理生化特性的影响[J].江苏农业科学,2014,42(05):89.
 Gai Yuhong,et al.Effects of saline alkali stress on photosynthetic characteristics and physiological-biochemical characteristics of wild soybean[J].Jiangsu Agricultural Sciences,2014,42(22):89.
[6]李波,陈雪梅,于海龙,等.混合盐碱胁迫对苜蓿种子萌发特性的影响[J].江苏农业科学,2015,43(08):221.
 Li Bo,et al.Effect of mixed salt and alkali stress on seed germination of alfalfa[J].Jiangsu Agricultural Sciences,2015,43(22):221.
[7]王鑫,朱悦,刘滨硕,等.盐碱胁迫下羊草抗氧化酶活性的变化[J].江苏农业科学,2015,43(05):209.
 Wang Xin,et al.Study on activities of antioxidant enzymes of Leymus chinensis under alkali-saline stress[J].Jiangsu Agricultural Sciences,2015,43(22):209.
[8]徐春莹,张亚玲,王丹,等.盐碱胁迫对不同水稻品种抗逆和抗瘟性相关酶的影响[J].江苏农业科学,2017,45(04):44.
 Xu Chunying,et al.Effects of saline-alkali stress on stress tolerance and blast resistance related enzymes of different rice varieties[J].Jiangsu Agricultural Sciences,2017,45(22):44.
[9]赵霞,叶林.盐碱胁迫对紫花苜蓿生长、品质及光合特性的影响[J].江苏农业科学,2017,45(21):176.
 Zhao Xia,et al.Effects of saline-alkaline stress on growth,quality and photosynthetic characters of alfalfa(Medicago sativa)[J].Jiangsu Agricultural Sciences,2017,45(22):176.
[10]刘志洋,刘岩.不同盐碱胁迫对桔梗种子萌发和幼苗生理特征的影响[J].江苏农业科学,2018,46(24):144.
 Liu Zhiyang,et al.Effects of different salt-alkaline stress treatments on seed germination and physiological characteristics of Platycodon grandiflorum[J].Jiangsu Agricultural Sciences,2018,46(22):144.

备注/Memo

备注/Memo:
收稿日期:2021-11-08
基金项目:滨州学院博士学位人员及具有硕士学位的高级职称人员科研启动费项目(编号:2019Y36)。
作者简介:王新亮 (1983—),男,山东宁津人,博士,高级工程师,主要从事果树抗逆及氮素吸收利用研究。E-mail:wiln1@163.com。
更新日期/Last Update: 2022-11-20