|本期目录/Table of Contents|

[1]陈盖,温可馨,司冰.盐胁迫下园林植物彩叶树响应菌根共生的比较转录组分析[J].江苏农业科学,2022,50(22):19-28.
 Chen Gai,et al.Transcriptome analysis of garden plant coleus in response to mycorrhizal symbiosis under salt stress[J].Jiangsu Agricultural Sciences,2022,50(22):19-28.
点击复制

盐胁迫下园林植物彩叶树响应菌根共生的比较转录组分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第22期
页码:
19-28
栏目:
“转录组学”专栏
出版日期:
2022-11-20

文章信息/Info

Title:
Transcriptome analysis of garden plant coleus in response to mycorrhizal symbiosis under salt stress
作者:
陈盖1温可馨2司冰2
1.唐山工业职业技术学院,河北唐山 063299; 2.渭南职业技术学院,陕西渭南 714026
Author(s):
Chen Gaiet al
关键词:
丛枝菌根真菌彩叶树鸡爪槭差异基因(DEGs)盐胁迫转录组
Keywords:
-
分类号:
S687.01
DOI:
-
文献标志码:
A
摘要:
土壤盐分是典型的非生物胁迫因素之一,严重影响着植物的生长发育。为了解盐胁迫下鸡爪槭(Acer palmatum)对接种丛枝菌根真菌的应答分子机制,对接种丛枝菌根处理(AM)、盐胁迫处理(SS)、盐胁迫接种丛枝菌根处理(AS)及对照处理(CK)进行转录组测序分析。结果表明,基于转录组测序技术(RNA-Seq)测序共获得4 672个新基因;将SS与AS处理进行比较时,鉴定出455个差异表达基因(DEGs),其中286个基因上调表达,169个基因下调表达。对获得的DEGs进行功能注释及富集分析,GO(gene ontology)分析结果表明,盐胁迫下接种丛枝菌根真菌涉及蛋白质生物合成相关过程、ATP生物合成过程、蛋白质谷胱甘肽化、细胞分化调控、氮同化相关过程、呼吸电子传递链以及类胡萝卜素代谢等生物过程。KEGG(kyoto encyclopedia of genes and genomes)富集分析结果表明,主要涉及苯丙烷、黄酮类、二芳基庚烷类及姜酚的次生代谢通路。综合GO、KEGG富集分析结果可知,这些基因主要参与植物细胞内部环境的改善、氮代谢相关过程和宿主光保护机制。实时荧光定量PCR(qRT-PCR)验证表明,挑选的6个DEGs表达趋势与测序结果高度一致,说明测序结果准确可靠。本研究丰富了丛枝菌根真菌对盐胁迫的改善机制,可为后续研究功能分析的耐盐候选基因提供理论依据。
Abstract:
-

参考文献/References:

[1]Munns R,Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology,2008,59:651-681.
[2]李明,冷冰莹,张晗菡,等. 盐胁迫下调控玉米胞内Na+/K+比稳定的主要机制与措施[J]. 山东农业科学,2021,53(6):133-138.
[3]刘云芬,彭华,王薇薇,等. 植物耐盐性生理与分子机制研究进展[J]. 江苏农业科学,2019,47(12):30-36.
[4]Hussain S,Hussain S,Ali B,et al. Recent progress in understanding salinity tolerance in plants:story of Na+/K+ balance and beyond[J]. Plant Physiology and Biochemistry,2021,160:239-256.
[5]Vaseva I I,Mishev K,Depaepe T,et al. The diverse salt-stress response of Arabidopsis ctr1-1 and ein2-1 ethylene signaling mutants is linked to altered root auxin homeostasis[J]. Plants,2021,10(3):452.
[6]曹本福,姜海霞,刘丽,等. 丛枝菌根菌丝网络在植物互作中的作用机制研究进展[J]. 应用生态学报,2021,32(9):3385-3396.
[7]Pedranzani H,Rodríguez-Rivera M,Gutiérrez M,et al. Arbuscular mycorrhizal symbiosis regulates physiology and performance of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and jasmonate levels[J]. Mycorrhiza,2016,26(2):141-152.
[8]Hashem A,Alqarawi A A,Radhakrishnan R,et al. Arbuscular mycorrhizal fungi regulate the oxidative system,hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L.[J]. Saudi Journal of Biological Sciences,2018,25(6):1102-1114.
[9]陈保冬,于萌,郝志鹏,等. 丛枝菌根真菌应用技术研究进展[J]. 应用生态学报,2019,30(3):1035-1046.
[10]王琪,于晓南. 3种彩叶树对低温的生理响应及抗寒性评价[J]. 北京林业大学学报,2013,35(5):104-109.
[11]杨锦,史绍林,季晓慧,等. 低温胁迫对八种彩叶树生理指标的影响[J]. 北方园艺,2018(5):106-110.
[12]黄妍,周强,杨静慧,等. 土壤盐碱程度对不同种类彩叶植物生长的影响[J]. 天津农学院学报,2019,26(2):35-38,56.
[13]张爱娣,郑仰雄,黄东兵. 丛枝菌根真菌对大叶女贞耐盐性的影响[J]. 江苏农业科学,2018,46(19):129-133.
[14]Kormanik P P,Bryan W C,Schultz R C. Procedures and equipment for staining large numbers of plant root samples for endomycorrhizal assay[J]. Canadian Journal of Microbiology,1980,26(4):536-538.
[15]Love M I,Huber W,Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology,2014,15(12):550.
[16]Livak K J,Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods,2001,25(4):402-408.
[17]曹本福,姜海霞,陆引罡,等. 烟草与丛枝菌根真菌的共生效应研究进展[J]. 中国土壤与肥料,2021(1):327-338.
[18]孔亚丽,朱春权,曹小闯,等. 土壤微生物介导植物抗盐性机理的研究进展[J]. 中国农业科学,2021,54(10):2073-2083.
[19]孙思淼,常伟,宋福强. 丛枝菌根真菌提高盐胁迫植物抗氧化机制的研究进展[J]. 应用生态学报,2020,31(10):3589-3596.
[20]Das P,Nutan K K,Singla-Pareek S L,et al. Oxidative environment and redox homeostasis in plants:dissecting out significant contribution of major cellular organelles[J]. Frontiers in Environmental Science,2015,2:70.
[21]Zhang H,Han B,Wang T,et al. Mechanisms of plant salt response:insights from proteomics[J]. Journal of Proteome Research,2012,11(1):49-67.
[22]赵嫚,陈仕勇,李亚萍,等. 外源GABA对盐胁迫下金花菜种子萌发及幼苗抗氧化能力的影响[J]. 江苏农业学报,2021,37(2):310-316.
[23]Wu H H,Zou Y N,Rahman M M,et al. Mycorrhizas alter sucrose and proline metabolism in trifoliate orange exposed to drought stress[J]. Scientific Reports,2017,7:42389.
[24]王哲,柴里昂,樊怀福,等. 植物响应盐胁迫蛋白质组学研究进展[J]. 浙江农业学报,2019,31(6):1021-1028.
[25]Yang Y Q,Guo Y. Unraveling salt stress signaling in plants[J]. Journal of Integrative Plant Biology,2018,60(9):796-804.
[26]李晓院,解莉楠. 盐胁迫下植物Na+调节机制的研究进展[J]. 生物技术通报,2019,35(7):148-155.
[27]Gu C S,Xu S,Wang Z Q,et al. De novo sequencing,assembly,and analysis of Iris lactea var. chinensis roots transcriptome in response to salt stress[J]. Plant Physiology and Biochemistry,2018,125:1-12.
[28]Costa M A,Collins R E,Anterola A M,et al. An in silico assessment of gene function and organization of the phenylpropanoid pathway metabolic networks in Arabidopsis thaliana and limitations thereof[J]. Phytochemistry,2003,64(6):1097-1112.
[29]Li C C,Liu S H,Yao X H,et al. PnF3H,a flavanone 3-hydroxylase from the Antarctic moss Pohlia nutans,confers tolerance to salt stress and ABA treatment in transgenic Arabidopsis[J]. Plant Growth Regulation,2017,83(3):489-500.
[30]束胜,郭世荣,孙锦,等. 盐胁迫下植物光合作用的研究进展[J]. 中国蔬菜,2012(18):53-61.
[31]Turan S. Light acclimation in plants:photoinhibition and photoprotection[J]. Adv Bio Research,2012(3):90-94.
[32]Jin C,Ji J,Zhao Q,et al. Characterization of lycopene β-cyclase gene from Lycium chinense conferring salt tolerance by increasing carotenoids synthesis and oxidative stress resistance in tobacco[J]. Molecular Breeding,2015,35(12):228.
[33]Noguchi K,Yoshida K. Interaction between photosynthesis and respiration in illuminated leaves[J]. Mitochondrion,2008,8(1):87-99.

相似文献/References:

[1]李少朋,毕银丽,彭星.接种丛枝菌根真菌对矿井水回灌玉米生长的影响[J].江苏农业科学,2016,44(05):112.
 Li Shaopeng,et al.Effects of inoculation with AMF on growth of maize after recharging with mining water[J].Jiangsu Agricultural Sciences,2016,44(22):112.
[2]王丽丽,杨谦.接种枯草芽孢杆菌和丛枝菌根真菌促进红三叶修复石油污染土壤[J].江苏农业科学,2016,44(05):526.
 Wang Lili,et al.Effect of inoculation with plant growth-promoting rhizobacteria (PGPR) of bacillus subtilis and arbuscular mycorrhizal fungi of Glomus geosporum on phytoremediation of Trifolium pratense to petroleum contaminated soil[J].Jiangsu Agricultural Sciences,2016,44(22):526.
[3]任禛,韩丽,张永福,等.不同丛枝菌根真菌对玉米生长生理的影响[J].江苏农业科学,2015,43(05):63.
 Ren Zhen,et al.Effect of different arbuscular mycorrhizal fungi on growth and physiology of maize[J].Jiangsu Agricultural Sciences,2015,43(22):63.
[4]赵飞,蔡晓布.不同海拔高度对藏北高寒草甸丛枝菌根真菌的影响[J].江苏农业科学,2015,43(04):344.
 Zhao fei,et al.Effect of different altitudes on arbuscular mycorrhizal fungi in northern Tibetan alpine meadow[J].Jiangsu Agricultural Sciences,2015,43(22):344.
[5]杜俊卿.接种丛枝菌根真菌对不同绿化植物根际微环境的影响[J].江苏农业科学,2017,45(18):149.
 Du Junqing.Effects of inoculating arbuscular mycorrhizal fungi on rhizosphere microenvironment of different greening plants[J].Jiangsu Agricultural Sciences,2017,45(22):149.
[6]王娜,陈飞,岳英男,等.松嫩盐碱草地2种优势丛枝菌根真菌对紫花苜蓿耐盐性的影响[J].江苏农业科学,2017,45(24):146.
 Wang Na,et al.Effects of two dominant AM fungi on salt tolerance of Medicago sativa in Songnen saline-alkaline grassland[J].Jiangsu Agricultural Sciences,2017,45(22):146.
[7]刘雪琴,韩锰,仝瑞建.纳米ZnO胁迫下丛枝菌根真菌根外菌丝对玉米生长及锌吸收的影响[J].江苏农业科学,2018,46(02):46.
 Liu Xueqin,et al.Effects of arbuscular mycorrhizal mycelium on maize growth and Zn uptake under ZnO nanoparticles stress[J].Jiangsu Agricultural Sciences,2018,46(22):46.
[8]刘薇,吕光辉,魏雪峰,等.AM真菌多样性与植物多样性耦合关系及其对水盐梯度的响应[J].江苏农业科学,2018,46(09):252.
 Liu Wei,et al.Coupling relationship between arbuscular mycorrhiza fungi diversity and plant diversity and its response to soil water and salinity gradient[J].Jiangsu Agricultural Sciences,2018,46(22):252.
[9]周昱.不同丛枝菌根真菌对云杉生长及根腐病的影响[J].江苏农业科学,2018,46(14):102.
 Zhou Yu.Effects of different arbuscular mycorrhizal fungi on growth and root rot of Picea asperata[J].Jiangsu Agricultural Sciences,2018,46(22):102.
[10]崔美香,卢彦琦,祁芳,等.丛枝菌根真菌对小麦生长发育及根茎部病害发生的影响[J].江苏农业科学,2018,46(16):81.
 Cui Meixiang,et al.Effects of arbuscular mycorrhizal fungi on growth and occurrence of root and stem diseases of wheat[J].Jiangsu Agricultural Sciences,2018,46(22):81.

备注/Memo

备注/Memo:
收稿日期:2021-12-15
基金项目:陕西省教育厅专项科学研究计划(编号:20JK0639)。
作者简介:陈盖(1990—),男,河北唐山人,硕士,讲师,研究方向为园林生物技术。E-mail:7153267620@qq.com。
更新日期/Last Update: 2022-11-20