|本期目录/Table of Contents|

[1]吴玲.水稻土中土著细菌群落对重金属Cd的响应[J].江苏农业科学,2022,50(22):233-238.
 Wu Ling.Response of indigenous bacterial communities to cadmium in paddy soil[J].Jiangsu Agricultural Sciences,2022,50(22):233-238.
点击复制

水稻土中土著细菌群落对重金属Cd的响应(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第22期
页码:
233-238
栏目:
资源与环境
出版日期:
2022-11-20

文章信息/Info

Title:
Response of indigenous bacterial communities to cadmium in paddy soil
作者:
吴玲12
1.常州工程职业技术学院检验检测认证学院,江苏常州 213164;2.南京师范大学地理科学学院江苏省物质循环与污染控制重点实验室,江苏南京 210023
Author(s):
Wu Ling
关键词:
水稻土细菌群落高通量测序
Keywords:
-
分类号:
S154.3;X53
DOI:
-
文献标志码:
A
摘要:
为探究不同镉(Cd)浓度对水稻土中细菌群落分布的影响,设置不同Cd2+浓度梯度(0、20、40、80、160 mg/kg)的盆栽水稻土,采集水稻成熟期的根际土与非根际土,测定土壤样品的pH值、总氮(TN)、总有机碳(TOC)、铵态氮(NH+4-N)与硝态氮(NO-3-N),并利用基于16S rRNA基因的高通量测序技术研究水稻土样品中的细菌群落结构以及细菌群落结构与Cd含量等理化因子的潜在关系。结果显示,不同Cd含量的水稻土样品中原核微生物主要为细菌界(Bacteria),共有35个门94个纲,变形菌门(Proteobacteria)和γ-变形菌纲(γ-Protebacteria)细菌在不同Cd含量的水稻土样品中均表现出优势。研究表明,水稻土中Cd和NO-3-N含量显著影响水稻土中纲水平细菌群落丰度。
Abstract:
-

参考文献/References:

[1]Toppi L S D,Gabbrielli R. Response to cadmium in higher plants[J]. Environmental and Experimental Botany,1999,41(2):105-130.
[2]Wang Q R,Kim D,Dionysiou D D,et al. Sources and remediation for mercury contamination in aquatic systems—A literature review[J]. Environmental Pollution,2004,131(2):323-336.
[3]Luo Z B,Ma J,Chen F,et al. Effects of Pb smelting on the soil bacterial community near a secondary lead plant[J]. International Journal of Environmental Research and Public Health,2018,15(5):1030.
[4]陈朗,宋玉芳,张薇,等. 土壤镉污染毒性效应的多指标综合评价[J]. 环境科学,2008,29(9):2606-2612.
[5]钱春香,王明明,许燕波. 土壤重金属污染现状及微生物修复技术研究进展[J]. 东南大学学报(自然科学版),2013,43(3):669-674.
[6]Lehmann J,Rillig M C,Thies J,et al. Biochar effects on soil biota—A review[J]. Soil Biology and Biochemistry,2011,43(9):1812-1836.
[7]Jordan M J,Lechevalier M P. Effects of zinc-smelter emissions on forest soil microflora[J]. Canadian Journal of Microbiology,1975,21(11):1855-1865.
[8]Pennanen T,Frostegard A,Fritze H,et al. Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal-polluted gradients in coniferous forests[J]. Applied and Environmental Microbiology,1996,62(2):420-428.
[9]Broos K,Mertens J,Smolders E. Toxicity of heavy metals in soil assessed with various soil microbial and plant growth assays:a comparative study[J]. Environmental Toxicology and Chemistry,2005,24(3):634-640.
[10]Ros M,Pascual J A,Moreno J L,et al. Evaluation of microbial community activity,abundance and structure in a semiarid soil under cadmium pollution at laboratory level[J]. Water,Air,and Soil Pollution,2009,203(1/2/3/4):229-242.
[11]Bth E. Effects of heavy metals in soil on microbial processes and populations (a review)[J]. Water,Air,and Soil Pollution,1989,47(3/4):335-379.
[12]Vig K,Megharaj M,Sethunathan N,et al. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil:a review[J]. Advances in Environmental Research,2003,8(1):121-135.
[13]闫敏,秦诗洁,崔永亮,等. 镉吸附细菌的分离及其对土壤镉的固定[J]. 微生物学报,2020,60(11):2423-2433.
[14]陈希. 茶园根际土壤与植物体养分对酸沉降的响应[D]. 南昌:南昌大学,2015.
[15]Wu Y C,Xiang Y,Wang J J,et al. Heterogeneity of archaeal and bacterial ammonia oxidizing communities in Lake Taihu,China[J]. Environmental Microbiology Reports,2010,2(4):569-576.
[16]应多. 添加玉米秸秆条件下重金属污染对水稻土有机碳矿化和微生物群落结构的影响[D]. 南京:南京农业大学,2018.
[17]Zhou D N,Zhang F P,Duan Z Y,et al. Effects of heavy metal pollution on microbial communities and activities of mining soils in Central Tibet,China[J]. Journal of Food,Agriculture & Environment,2013,11(1):676-681.
[18]滕应,黄昌勇. 重金属污染土壤的微生物生态效应及其修复研究进展[J]. 土壤与环境,2002,11(1):85-89.
[19]俎千惠,王保战,贾仲君,等. 水稻土中紫色光合细菌沿纬度梯度的空间分异特征[J]. 生态学报,2016,36(21):6730-6737.
[20]Hou D D,Wang R Z,Gao X Y,et al. Cultivar-specific response of bacterial community to cadmium contamination in the rhizosphere of rice (Oryza sativa L.)[J]. Environmental Pollution,2018,241:63-73.
[21]Zhang X,Yang H H,Cui Z J.Assessment on cadmium and lead in soil based on a rhizosphere microbial community[J]. Toxicology Research,2017,6(5):671-677.
[22]陈晓天. 土壤改良剂及放线菌剂对镉(Cd)污染农田的修复作用研究[D]. 杨凌:西北农林科技大学,2020.
[23]Song H J,Peng L,Li Z Y,et al. Metal distribution and biological diversity of crusts in paddy fields polluted with different levels of cadmium[J]. Ecotoxicology and Environmental Safety,2019,184:109620.
[24]Miranda A R L,Mendes L W,Rocha S M B,et al. Responses of soil bacterial community after seventh yearly applications of composted tannery sludge[J]. Geoderma,2018,318:1-8.
[25]Luo S L,Chen L,Chen J L,et al. Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation[J]. Chemosphere,2011,85(7):1130-1138.
[26]Soo R M,Hemp J,Parks D H,et al. On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria[J]. Science,2017,355(6332):1436-1440.
[27]Singh J S,Kumar A,Rai A N,et al. Cyanobacteria:a precious bio-resource in agriculture,ecosystem,and environmental sustainability[J]. Frontiers in Microbiology,2016,7:529.
[28]Kuenzer C,Knauer K. Remote sensing of rice crop areas[J]. International Journal of Remote Sensing,2013,34(6):2101-2139.
[29]Zehr J P. Nitrogen fixation by marine cyanobacteria[J]. Trends in Microbiology,2011,19(4):162-173.
[30]徐春晓. 集胞藻PCC 6803中基于实验室的镉离子耐受性驯化及机理研究[D]. 天津:天津大学,2018.
[31]赵军伟. 16S rRNA高通量测序分析条锈菌侵染对小麦根部菌群影响及新种放线菌鉴定[D]. 哈尔滨:东北农业大学,2016.
[32]Shao M M,Zhu Y. Long-term metal exposure changes gut microbiota of residents surrounding a mining and smelting area[J]. Scientific Reports,2020,10:4453.
[33]Kiseleva L,Garushyants S K,Ma H W,et al. Taxonomic and functional metagenomic analysis of anodic communities in two pilot-scale microbial fuel cells treating different industrial wastewaters[J]. Journal of Integrative Bioinformatics,2015,12(1):273.
[34]Yang Y J,Xiong J,Chen R J,et al. Excessive nitrate enhances cadmium (Cd) uptake by up-regulating the expression of OsIRT1 in rice (Oryza sativa)[J]. Environmental and Experimental Botany,2016,122:141-149.
[35]Li J Y,Fu Y L,Pike S M,et al. The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance[J]. The Plant Cell,2010,22(5):1633-1646.

相似文献/References:

[1]袁瑞霞,于鹏.中国主要水稻种植区土壤对磷的吸附与解吸特性——以日本宇都宫土壤为参照[J].江苏农业科学,2014,42(02):286.
 Yuan Ruixia,et al.Characteristics of adsorption and desorption of phosphate in soils from Chinas main rice-growing areas—Compared with Utsunomiya soil of Japan[J].Jiangsu Agricultural Sciences,2014,42(22):286.
[2]黄会前,何腾兵,邓廷飞,等.黄壤性水稻土氧化铁形态及剖面分异特征[J].江苏农业科学,2017,45(17):273.
 Huang Huiqian,et al.Morphological and profile characteristics of iron oxide in yellow paddy soils[J].Jiangsu Agricultural Sciences,2017,45(22):273.
[3]徐祥明,王海兰,覃灵华.基于Image-Pro Plus的土壤颗粒微形态定量化研究[J].江苏农业科学,2018,46(1):236.
 Xu Xiangming,et al.Quantitative analysis of soil micromorphology based on Image-Pro Plus[J].Jiangsu Agricultural Sciences,2018,46(22):236.
[4]狄霖,刘玲玲,钟志仁,等.水稻田铁氧化菌的丰度及微生物群落结构组成[J].江苏农业科学,2019,47(10):296.
 Di Lin,et al.Abundance of iron oxidizing bacteria and composition of microbial community structure in paddy fields[J].Jiangsu Agricultural Sciences,2019,47(22):296.
[5]李磊,韩成,王宵宵,等.镉胁迫下转基因水稻对根际土壤微生物的影响[J].江苏农业科学,2019,47(14):282.
 Li Lei,et al.Effect of transgenic rice on rhizospheric soil microorganisms under cadmium stress[J].Jiangsu Agricultural Sciences,2019,47(22):282.
[6]王亚婷,党媛,杜焰玲,等.成都平原典型稻作土壤重金属镉有效性及主要驱动机制[J].江苏农业科学,2020,48(1):225.
 Wang Yating,et al.Availability and main driving mechanism of heavy metal Cd in typical paddy soils in Chengdu Plain[J].Jiangsu Agricultural Sciences,2020,48(22):225.
[7]刘震,徐玉鹏,赵忠祥,等.不同年限苜蓿根际土壤细菌群落的多样性[J].江苏农业科学,2020,48(8):184.
 Liu Zhen,et al.Diversity of bacterial community in rhizosphere soil of alfalfa with different years[J].Jiangsu Agricultural Sciences,2020,48(22):184.
[8]杨敏,曹敬东,郑元仙,等.生物有机肥对热区烤烟根际土壤酚酸类物质和细菌群落结构的影响[J].江苏农业科学,2020,48(24):244.
 Yang Min,et al.Effects of bio-organic fertilizer on phenolic acids and bacterial community structure in rhizosphere soil of tobacco[J].Jiangsu Agricultural Sciences,2020,48(22):244.
[9]吴照祥,刘巧丽,李辉虎,等.有机肥对退化红壤中细菌群落功能组成影响的PICRUSt基因预测分析[J].江苏农业科学,2021,49(16):60.
 Wu Zhaoxiang,et al.Effects of organic fertilizer on bacterial functional composition in degraded red soil by PICRUSt functional prediction[J].Jiangsu Agricultural Sciences,2021,49(22):60.
[10]李剑睿,徐应明.长期淹水、传统灌溉、湿润灌溉条件下海泡石修复镉污染水稻土效应[J].江苏农业科学,2021,49(17):226.
 Li Jianrui,et al.Effects of sepiolite repairing cadmium-contaminated paddy soil under long-term flooding, traditional irrigation, and wetting irrigation[J].Jiangsu Agricultural Sciences,2021,49(22):226.

备注/Memo

备注/Memo:
收稿日期:2021-11-15
基金项目:国家自然科学基金(编号:41771286、41271255);常州市科技支撑计划(农业)项目(编号:CE20192017);武进区科技支撑计划(社会发展)项目(编号:WS202036);2021年江苏省青蓝工程项目。
作者简介:吴玲(1981—),女,江苏常州人,博士,副教授,主要从事土壤与水体沉积物污染及N循环微生物的生态功能及代谢多样性研究。E-mail:lwu@czie.edu.cn。
更新日期/Last Update: 2022-11-20