|本期目录/Table of Contents|

[1]叶幼荣,张健,赵舜旺,等.猪MYL2基因多态性及其在肌肉组织中的差异表达[J].江苏农业科学,2022,50(24):131-135.
 Ye Yourong,et al.Analysis of MYL2 gene polymorphism and its differential expression in muscular tissue of pigs[J].Jiangsu Agricultural Sciences,2022,50(24):131-135.
点击复制

MYL2基因多态性及其在肌肉组织中的差异表达(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第24期
页码:
131-135
栏目:
畜牧兽医与水产蚕桑
出版日期:
2022-12-20

文章信息/Info

Title:
Analysis of MYL2 gene polymorphism and its differential expression in muscular tissue of pigs
作者:
叶幼荣123张健123赵舜旺12徐士军12刘振东12强巴央宗123商鹏123
1.西藏农牧学院,西藏林芝 860000; 2.西藏特色农牧资源研发省部共建协同创新中心,西藏林芝 860000;3.西藏自治区林芝藏猪农业科技园区,西藏林芝 860000
Author(s):
Ye Youronget al
关键词:
MYL2基因SNP藏猪转录因子相对表达量
Keywords:
-
分类号:
S828.2
DOI:
-
文献标志码:
A
摘要:
肌球蛋白轻链-2(myosin light chain 2,MYL2)是哺乳动物横纹肌中的一种主要肌小节蛋白,对动物正常生长发育起重要调控作用,为探究猪MYL2基因的多态性及其在横纹肌中mRNA表达规律,以藏猪(TP)和大约克猪(YY)作为试验动物,采用Sanger测序法对MYL2基因5′非翻译区(5′UTR)进行单核苷酸多态性(SNP)的筛选与基因分型,并预测分析MYL2基因SNPs位点突变前后转录因子功能特性;同时,采用RT-qPCR技术检测MYL2基因在30、90、180日龄时TP和YY的心肌和背最长肌组织中的mRNA相对表达量。结果显示,MYL2基因启动子区域存在2个SNPs且2个品种间基因频率差异极显著(P<0.01),产生4个新增转录因子结合位点,这些位点调控横纹肌的收缩、肌纤维类型的维持、肌肉细胞的增殖分化等过程;MYL2基因的mRNA水平随日龄增长而升高,且3个日龄TP心肌和背最长肌组织中的表达量均极显著高于YY(P<0.01)。综上表明,猪MYL2基因SNPs位点与心肌和背最长肌mRNA的差异表达相关,研究结果可为研究藏猪生长发育的分子调控机制提供一定的理论依据。
Abstract:
-

参考文献/References:

[1]申勇,陈伟,代振新,等. 从江香猪MYL2基因CDS区克隆及序列分析[J]. 黑龙江畜牧兽医,2018(13):95-97,243.
[2]胡珊,吴钢.肌球蛋白调节性轻链磷酸化在慢性心力衰竭发生机制中的作用[J]. 上海交通大学学报(医学版),2017,37(8):1165-1168.
[3]Weterman M A J,Barth P G,van Spaendonck-Zwarts K Y,et al. Recessive MYL2 mutations cause infantile type Ⅰ muscle fibre disease and cardiomyopathy[J]. Brain,2013,136(1):282-293.
[4]Huang W R,Liang J S,Kazmierczak K,et al. Hypertrophic cardiomyopathy associated Lys104Glu mutation in the myosin regulatory light chain causes diastolic disturbance in mice[J]. Journal of Molecular and Cellular Cardiology,2014,74:318-329.
[5]Szczesna D,Ghosh D,Li Q,et al. Familial hypertrophic cardiomyopathy mutations in the regulatory light chains of myosin affect their structure,Ca2+binding,and phosphorylation[J]. The Journal of Biological Chemistry,2001,276(10):7086-7092.
[6]Park I,Han C,Jin S,et al. Myosin regulatory light chains are required to maintain the stability of myosin Ⅱ and cellular integrity[J]. The Biochemical Journal,2011,434(1):171-180.
[7]Zhang S Z,Xu Y,Xie H Q,et al. The possible role of myosin light chain in myoblast proliferation[J]. Biological Research,2009,42(1):121-132.
[8]Geeves M A,Fedorov R,Manstein D J.Molecular mechanism of actomyosin-based motility[J]. Cellular and Molecular Life Sciences,2005,62(13):1462-1477.
[9]Vicente-Manzanares M,Ma X F,Adelstein R S,et al. Non-muscle myosin Ⅱ takes centre stage in cell adhesion and migration[J]. Nature Reviews Molecular Cell Biology,2009,10(11):778-790.
[10]杨天良,杨雅楠,王彪,等. 藏猪适应高原低氧环境的肺脏血管铸型特征[J]. 中国兽医学报,2021,41(3):526-531.
[11]张云鹏,高一,张志彬,等. 分子标记技术的优缺点及在猪育种上的应用[J]. 养猪,2021(6):65-68.
[12]Huang W R,Liang J S,Yuan C C,et al. Novel familial dilated cardiomyopathy mutation in MYL2 affects the structure and function of myosin regulatory light chain[J]. The FEBS Journal,2015,282(12):2379-2393.
[13]Szczesna-Cordary D,Guzman G,Zhao J,et al. The E22K mutation of myosin RLC that causes familial hypertrophic cardiomyopathy increases calcium sensitivity of force and ATPase in transgenic mice[J]. Journal of Cell Science,2005,118(pt 16):3675-3683.
[14]Li Y H,Wu G,Tang Q Z,et al. Slow cardiac myosin regulatory light chain 2 (MYL2) was down-expressed in chronic heart failure patients[J]. Clinical Cardiology,2011,34(1):30-34.
[15]Sheikh F,Lyon R C,Chen J.Functions of myosin light chain-2 (MYL2) in cardiac muscle and disease[J]. Gene,2015,569(1):14-20.
[16]Sheikh F,Ouyang K F,Campbell S G,et al. Mouse and computational models link Mlc2v dephosphorylation to altered myosin kinetics in early cardiac disease[J]. The Journal of Clinical Investigation,2012,122(4):1209-1221.
[17]Ouyang H J,Wang Z J,Chen X L,et al. Proteomic analysis of chicken skeletal muscle during embryonic development[J]. Frontiers in Physiology,2017,8:281.
[18]Zhi Y,Cao Z,Li Q H,et al. Transcriptional analysis of atrial and ventricular muscles from rats[J]. Genetics and Molecular Research,2016,15(1):gmr7330.
[19]He B,Zhao Y C,Xu L W,et al. The nuclear melatonin receptor RORα is a novel endogenous defender against myocardial ischemia/reperfusion injury[J]. Journal of Pineal Research,2016,60(3):313-326.
[20]Cai X Y,Zhang P,Wang S,et al. lncRNA FGD5 antisense RNA 1 upregulates RORA to suppress hypoxic injury of human cardiomyocyte cells by inhibiting oxidative stress and apoptosis via miR-195[J]. Molecular Medicine Reports,2020,22(6):4579-4588.
[21]Sutherland C J,Esser K A,Elsom V L,et al. Identification of a program of contractile protein gene expression initiated upon skeletal muscle differentiation[J]. Developmental Dynamics,1993,196(1):25-36.
[22]Chen J,Kubalak S W,Minamisawa S,et al. Selective requirement of myosin light chain 2v in embryonic heart function[J]. The Journal of Biological Chemistry,1998,273(2):1252-1256.
[23]Zhang S Z,Xu Y,Xie H Q,et al. The possible role of myosin light chain in myoblast proliferation[J]. Biological Research,2009,42(1):121-132.
[24]Ash G I,Kostek M A,Lee H,et al. Glucocorticoid receptor (NR3C1) variants associate with the muscle strength and size response to resistance training[J]. PLoS One,2016,11(1):e0148112.
[25]Shimizu N,Maruyama T,Yoshikawa N,et al. A muscle-liver-fat signalling axis is essential for central control of adaptive adipose remodelling[J]. Nature Communications,2015,6:6693.

相似文献/References:

[1]葛辰,凌去非,李彩娟,等.基于第二代测序的大鳞副泥鳅生长相关SNP标记的开发[J].江苏农业科学,2014,42(10):21.
 Ge Chen,et al.Development of growth-associated SNP markers of Paramisgurnus dabryanus based on next-generation sequencing[J].Jiangsu Agricultural Sciences,2014,42(24):21.
[2]石浩,徐亚欧,梅寒,等.米易鸡ADSL基因第2和第9外显子多态性与肌苷酸含量的关联[J].江苏农业科学,2015,43(05):29.
 Shi Hao,et al.Relationship between polymorphism of ADSL gene exon2 and exon9 and IMP contents in MIYI chickens[J].Jiangsu Agricultural Sciences,2015,43(24):29.
[3]张世勇,王明华,钟立强,等.斑点叉尾[XCZ13.tif]MSTN基因4个SNP位点及其与生长性状的相关性[J].江苏农业科学,2017,45(01):30.
 Zhang Shiyong,et al.Identification of four SNPs in myostatin(MSTN) gene of Ictalunes punctatus and their association with growth traits[J].Jiangsu Agricultural Sciences,2017,45(24):30.
[4]周军永,陆丽娟,刘茂,等.基于李府贡枣转录组测序的SSR和SNP特征分析[J].江苏农业科学,2019,47(04):51.
 Zhou Junyong,et al.Analysis of SSR and SNP characteristics based on transcriptome sequencing of Lifugongzao jujube[J].Jiangsu Agricultural Sciences,2019,47(24):51.
[5]唐修阳,王传聪,项杰,等.罗氏沼虾转录组免疫相关SNP的挖掘与分析[J].江苏农业科学,2019,47(04):145.
 Tang Xiuyang,et al.Mining and analysis of immune-related SNPs in transcriptome of Macrobrachium rosenbergii[J].Jiangsu Agricultural Sciences,2019,47(24):145.
[6]么大轩,张彬,刘松涛,等.基于SNP和SSR对甜玉米种质遗传多样性的评价[J].江苏农业科学,2019,47(07):45.
 Yao Daxuan,et al.Evaluation of genetic diversity of sweet corn germplasm based on SNP and SSR[J].Jiangsu Agricultural Sciences,2019,47(24):45.
[7]杨俊芳,曹越,王宙,等.蓖麻高密度遗传图谱构建亲本SNP多态性分析[J].江苏农业科学,2021,49(9):53.
 Yang Junfang,et al.Polymorphism analysis of parental SNPs in castor plant high-density genetic map construction[J].Jiangsu Agricultural Sciences,2021,49(24):53.
[8]田志强,李志敏,贾琳,等.玉米大斑病抗病QTL的鉴定与效应分析[J].江苏农业科学,2021,49(20):70.
 Tian Zhiqiang,et al.Identification and effect analysis of QTLs for resistance to corn leaf spot disease[J].Jiangsu Agricultural Sciences,2021,49(24):70.
[9]陈新企,周光现,王慧芳,等.狮头鹅MAP2K1基因SNP位点筛查及生物信息学分析[J].江苏农业科学,2022,50(11):43.
 Chen Xinqi,et al.SNP screening and bioinformatics analysis of MAP2K1 gene in Shitou goose[J].Jiangsu Agricultural Sciences,2022,50(24):43.
[10]刘万达,杨光,焦奎宝,等.基于SLAF-seq技术的苹果SNP位点开发及遗传多样性分析[J].江苏农业科学,2023,51(8):61.
 Liu Wanda,et al.Development and genetic diversity analysis of SNP site in apple based on SLAF-seq technology[J].Jiangsu Agricultural Sciences,2023,51(24):61.

备注/Memo

备注/Memo:
收稿日期:2022-02-09
基金项目:西藏自治区重大科技专项项目(编号:XZ202101ZD0005N);林芝市巴宜区重点研发计划(编号:2021-GX-SY-01);四川省区域创新合作项目(编号:2020YFQ0029)。
作者简介:叶幼荣(1989—),女,河南信阳人,硕士,讲师,主要从事动物遗传育种与繁殖学研究。E-mail:yeyourong@xza.edu.cn。
通信作者 :商鹏,博士,副教授,主要从事动物功能基因组研究。E-mail:nemoshpmh@126.com。
更新日期/Last Update: 2022-12-20