|本期目录/Table of Contents|

[1]张变华,靳东升,张强,等.煤矸石复垦区玉米根际与非根际土壤细菌群落对覆土厚度的响应[J].江苏农业科学,2023,51(4):226-231.
 Zhang Bianhua,et al.Response of bacterial community in maize rhizosphere and non-rhizosphere soil to soil cover thickness in coal gangue reclamation area[J].Jiangsu Agricultural Sciences,2023,51(4):226-231.
点击复制

煤矸石复垦区玉米根际与非根际土壤细菌群落对覆土厚度的响应(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第4期
页码:
226-231
栏目:
资源与环境
出版日期:
2023-02-20

文章信息/Info

Title:
Response of bacterial community in maize rhizosphere and non-rhizosphere soil to soil cover thickness in coal gangue reclamation area
作者:
张变华1 靳东升2 张强2 郜春花2 李建华2
1.忻州师范学院,山西忻州 034000; 2.山西农业大学,山西太原 030031
Author(s):
Zhang Bianhuaet al
关键词:
玉米根际与非根际细菌群落多样性覆土煤矸石复垦区
Keywords:
-
分类号:
S154.3;X171.4
DOI:
-
文献标志码:
A
摘要:
为了解煤矸石填埋区复垦土壤细菌群落对覆土厚度的响应机制,以山西省屯兰矿区不同覆土厚度下(40、80、120 cm)玉米根际与非根际土壤样品为试验材料,对土壤细菌V3-V4区进行高通量测序,分析细菌群落群落结构、多样性及其与土壤养分的相关性。研究结果表明,不同覆土厚度下玉米根际细菌扩增序列变体(ASV)数量均高于非根际土壤,80 cm覆土厚度下根际与非根际土壤中细菌的ASV数量最多;放线菌门和变形菌门为该复垦区各覆土厚度下的玉米根际与非根际土壤中的优势细菌门,溶杆菌属、分枝杆菌属、类诺卡式属和67-14属为优势细菌属。覆土厚度可以改变玉米根际与非根际土壤中的细菌群落结构及其多样性。覆土80 cm为该复垦区较为适宜的覆土厚度,该覆土厚度不仅能够提高玉米根际放线菌门、类诺卡式属的相对丰度,增加非根际土壤中变形菌门67-14属的相对丰度,而且可以增加复垦土壤中的细菌群落的物种多样性和均一度指数,土壤速效钾、有效磷和有机质含量是驱动土壤细菌群落物种多样性变化的主要养分因子。
Abstract:
-

参考文献/References:

[1]Liu H B,Liu Z L. Recycling utilization patterns of coal mining waste in China[J]. Resources,Conservation and Recycling,2010,54(12):1331-1340.
[2]Gao Y J,Huang H J,Tang W J,et al. Preparation and characterization of a novel porous silicate material from coal gangue[J]. Microporous and Mesoporous Materials,2015,217:210-218.
[3]Stracher G B,Taylor T P. Coal fires burning out of control around the world:thermodynamic recipe for environmental catastrophe[J]. International Journal of Coal Geology,2004,59(1/2):7-17.
[4]Fu T L,Wu Y G,Ou L S,et al. Effects of thin covers on the release of coal gangue contaminants[J]. Energy Procedia,2012,16:327-333.
[5]Boruvka L,Lozk J,Mühlhanselov M,et al. Effect of covering with natural topsoil as a reclamation measure on mining dumpsites[J]. Journal of Geochemica Exploration,2012,113:118-123.
[6]洪坚平,谢英荷,林大仪,等. 不同复垦措施对矸石山培肥熟化的研究[J]. 土壤肥料,1996(4):42-44.
[7]郭友红,李树志,鲁叶江. 塌陷区矸石充填复垦耕地覆土厚度的研究[J]. 矿山测量,2008(2):59-61,4.
[8]刘会平,严家平,樊雯. 不同覆土厚度的煤矸石充填复垦区土壤生产力评价[J]. 能源环境保护,2010,24(1):52-56
[9]刘鑫尧,严家平. 煤矿复垦地不同覆土厚度对小麦产量影响研究:以淮南煤矸石充填耕地复垦地为例[J]. 能源环境保护,2013,27(6):8-11.
[10]黄凯. 煤矸石充填复垦土壤水分含量与作物有效性的研究[J]. 安徽农业科学,2014,42(6):1598-1599,1602.
[11]张轩,张强,郜春花,等. 覆土厚度对煤矸石山复垦土壤水分及大豆生长的影响[J]. 山西农业科学,2015,43(8):968-971,991.
[12]张轩. 覆土厚度对矸石山复垦区土壤性质的影响研究[D]. 太原:山西大学,2016.
[13]陈孝杨,王芳,严家平,等. 覆土厚度对矿区复垦土壤呼吸昼夜变化的影响[J]. 中国矿业大学学报,2016,45(1):163-169.
[14]Zvomuya F,Larney F J,Akinremi O O,et al. Topsoil replacement depth and organic amendment effects on plant nutrient uptake from reclaimed natural gas wellsites[J]. Canadian Journal of Soil Science,2006,86(5):859-869.
[15]Riley D,Barber S A. Bicarbonate accumulation and pH changes at the soybean [Glycine max (L.) Merr.] root-soil interface[J]. Soil Science Society of America Journal,1969,33(6):905-908.
[16]李金融,侯湖平,王琛,等. 基于高通量测序的复垦土壤细菌多样性研究[J]. 环境科学与技术,2018,41(12):148-157.
[17]刘志恒. 放线菌:微生物药物的重要资源[J]. 微生物学通报,2005,32(6):143-145.
[18]马静,卢永强,张琦,等. 黄土高原采煤沉陷对土壤微生物群落的影响[J]. 土壤学报,2021,58(5):1278-1288.
[19]Edwards J,Johnson C,Santos-Medellín C,et al. Structure,variation,and assembly of the root-associated microbiomes of rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(8):E911-E920.
[20]Fitzpatrick C R,Copeland J,Wang P W,et al. Assembly and ecological function of the root microbiome across angiosperm plant species[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(6):E1157-E1165.
[21]Liu F,Hewezi T,Lebeis S L,et al. Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly[J]. BMC Microbiology,2019,19(1):201.
[22]Schippers B,Bakker A W,Bakker P A H M. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices[J]. Annual Review of Phytopathology,1987,25:339-358.
[23]Lu H F,Lashari M S,Liu X Y,et al. Changes in soil microbial community structure and enzyme activity with amendment of biochar-manure compost and pyroligneous solution in a saline soil from central China[J]. European Journal of Soil Biology,2015,70:67-76.
[24]Deng Q,Cheng X L,Hui D F,et al. Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China[J]. The Science of the Total Environment,2016,541:230-237.
[25]Wang P,Marsh E L,Ainsworth E A,et al. Shifts in microbial communities in soil,rhizosphere and roots of two major crop systems under elevated CO2 and O3[J]. Scientific Reports,2017,7:15019.
[26]Bakker M G,Chaparro J M,Manter D K,et al. Impacts of bulk soil microbial community structure on rhizosphere microbiomes of Zea mays[J]. Plant and Soil,2015,392(1/2):115-126.
[27]Berg G,Smalla K.Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere[J]. FEMS Microbiology Ecology,2009,68(1):1-13.
[28]Wang Q F,Ma M C,Jiang X,et al. Impact of 36 years of nitrogen fertilization on microbial community composition and soil carbon cycling-related enzyme activities in rhizospheres and bulk soils in northeast China[J]. Applied Soil Ecology,2019,136:148-157.
[29]Tian K,Zhao Y C,Xu X H,et al. Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China:a meta-analysis[J]. Agriculture,Ecosystems & Environment,2015,204:40-50.

相似文献/References:

[1]孙建伟.水涝胁迫对玉米细胞保护酶同工酶的影响[J].江苏农业科学,2013,41(04):85.
[2]刘荣,张卫建,齐华,等.密植型玉米“中单909”高产群体结构特征[J].江苏农业科学,2013,41(05):56.
 Liu Rong,et al.Study on high yield population structure of close planting maize cultivar “Zhongdan 909”[J].Jiangsu Agricultural Sciences,2013,41(4):56.
[3]沈浜凯,肖龙云,冯乃杰,等.黄腐酸和AM真菌对玉米幼苗抗旱性的影响[J].江苏农业科学,2013,41(05):64.
 Shen Bangkai,et al.Effects of fulvic acid and AM fungi on drought resistance of maize seedlings[J].Jiangsu Agricultural Sciences,2013,41(4):64.
[4]张金然,缑艳霞,孙丽鹏.固氮螺菌157对玉米、向日葵的促生长作用[J].江苏农业科学,2014,42(12):116.
 Zhang Jinran,et al.Effects of Azospirillum 157 on growth of maize and sunflower[J].Jiangsu Agricultural Sciences,2014,42(4):116.
[5]白小军,吴燕,牛艳,等.玉米中乙草胺和莠去津残留量GC-MS/MS分析法的建立[J].江苏农业科学,2014,42(11):334.
 Bai Xiaojun,et al().Establishment of GC-MS/MS analysis method of acetochlor and atrazine residues in maize[J].Jiangsu Agricultural Sciences,2014,42(4):334.
[6]邹晓威,王娜,刘芬,等.玉米抗病相关基因在玉米与玉米丝黑穗病菌、玉米黑粉病菌互作过程中的表达差异分析[J].江苏农业科学,2014,42(11):150.
 Zou Xiaowei,et al(0).Different expression of resistance-related genes between Sporisorium reilianum and Ustilago maydis interact with corn[J].Jiangsu Agricultural Sciences,2014,42(4):150.
[7]杨洪兴,陈静,陈艳萍.江苏省玉米机械化生产的发展及育种对策思考[J].江苏农业科学,2014,42(11):116.
 Yang Hongxing,et al().Development and breeding strategy of mechanized production of maize in Jiangsu Province[J].Jiangsu Agricultural Sciences,2014,42(4):116.
[8]张丽妍,霍剑锋,孟繁盛,等.不同肥料、施肥水平及施用方法对玉米产量、性状及效益的影响[J].江苏农业科学,2014,42(11):119.
 Zhang Liyan,et al (9).Effects of different fertilizers,fertilizer levels and fertilizing methods on yield,characters and benefit of maize[J].Jiangsu Agricultural Sciences,2014,42(4):119.
[9]王雷,崔震海,张立军.玉米C4型PEPC全长基因的克隆与表达载体构建[J].江苏农业科学,2014,42(11):26.
 Wang Lei,et al().Cloning and expression vector construction of full-length C4 type PEPC gene in maize[J].Jiangsu Agricultural Sciences,2014,42(4):26.
[10]雷恩,赵光明,刘艳红.不同稀释浓度松土保水剂对玉米营养生长的影响[J].江苏农业科学,2013,41(06):77.
 Lei En,et al.Effect of different dilutions of super absorbent polymer on vegetative growth of maize[J].Jiangsu Agricultural Sciences,2013,41(4):77.

备注/Memo

备注/Memo:
收稿日期:2022-03-10
基金项目:国家重点联合基金课题(编号:U1710255);山西省农业科学院农业科技创新-科企联合研发专项(编号:YGC2019KQ03)。
作者简介:张变华(1976—),女,山西偏关县人,博士,副教授,主要从事矿区土地复垦与生态重建研究。E-mail:sxdxzbh@126.com。
通信作者:靳东升,硕士,副研究员,主要从事矿区复垦与生态重建研究。E-mail:sxdxjds@126.com。
更新日期/Last Update: 2023-02-20